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Abstract—This paper aims at provoking a wide discussion
around code synthesis and its importance in creating the next
generation of self-improving software systems. As a starting
point for the discussion, a machine-to-machine self-improving
framework is presented. The framework aims at improving
system’s performance by integrating two modules: i) a self-
improving online module, and ii) a code synthesiser offline
module. The online module learns, at runtime, as it handles the
system’s inputs, how to best compose the system from a pallet of
available software components and a user-defined high level goal.
The offline code synthesiser generates new components based
on the perceived system’s input, executing environment and the
system’s goal provided by the online module. The code synthesiser
then provides better component options for the online module to
integrate with the system to improve its performance. The paper
describes the framework, focusing on its main challenges.

Index Terms—code synthesis, self-improving systems

I. INTRODUCTION

Contemporary systems are becoming more complex, with
increasing size, surpassing millions of lines of code running
on highly distributed, dynamic and heterogeneous operating
environments. These systems are soon to be beyond human
capacity to fully understand and to appropriately manage them
to maintain the current levels of quality users demand. Self-
integrating and self-improving systems aim at addressing these
concerns by pushing more responsibility to the system itself,
enabling systems to integrate newly added components, and
self-improve with a reduced level of human interference. A key
limitation of self-improving systems is that the entire system,
including the newly added pieces, is written by experts, who
put great effort into carefully considering technical details to
engineer new components to improve the system’s performance.
As a step beyond the state-of-the-art of self-improving systems
to enable them to properly handle contemporary systems
complexity, it is necessary to further push the responsibility
of handling frequent and low-level technical tasks, such as
the creation of new components to improve systems, to the
machine itself, and to transform the role of developers from
dealing with technical details to defining systems intent. This
paper presents code synthesis as a way to realise this vision
and to create the next generation of self-improving systems.

We centre the discussion around the application of code
synthesis to maximise the potential of self-improving systems.
Our discussion is mainly on the challenges in creating code
synthesisers and integrating them to online self-integrating,
self-improving systems. We propose a framework to show how

these two elements connect and to illustrate the potential of
this resulting machine-to-machine loop in improving systems
performance and reducing even further human interference.

This paper brings a discussion on the challenges of im-
plementing a functioning version of the proposed framework.
The challenges range from techniques to define which data to
collect from the online system to better assist code synthesisers
in creating high quality code, to challenges in code synthesis
process itself, such as addressing the large search space for
possible programs and the lack of a precise way to navigate
through the search space of possible programs.

II. APPROACH

Our approach envisions the integration of two main modules:
i) the online self-improving module, and ii) the offline code
synthesiser. The online self-improving module has been imple-
mented in previous works [1]–[3] referenced as Emergent Sys-
tems framework. This module is responsible to assemble fully
functioning systems from a pallet of small software components,
and reassemble the system by swapping these components at
runtime. The online module enables the system to learn, at
runtime, with no predefined domain-specific knowledge and
using reinforcement learning techniques, how to best compose
the system according to the operating environment and high
level system goals. This module has been implemented and
extensively experimented with in the context of web-based
applications in data centres [3]. The offline code synthesiser,
however, is the novel part of the proposed framework. Inspired
by recent advances in code synthesis with techniques ranging
from genetic improvement [4] to neural networks [5], we
envision the code synthesiser as a key element to advance
self-improving systems’ state-of-the-art.

The code synthesis module contains multiple code synthesis-
ers focused on generating code for different set of components.
Depending on the component, different code synthesis strategies
should be applied. For example, for components that are
generated from improving existing components, such as cache
components, which are generated by improving their hash
function, techniques such as genetic improvement has been
shown effective [4], whereas the synthesis of entirely new
components may use neural networks as described in [5].

The integration of two modules and the machine-to-machine
loop happens when the online self-improving module feeds data
about the running system and its operating environment to the
code synthesis module, which in turn uses the provided data to



synthesise a set of new components. The generated components
are then made available for the self-improving module to use
in production and further improve the system’s performance.
The self-improving module has to collect data from the system
to assist the reinforcement learning algorithm to find the most
suitable software components, and also to assist the offline
synthesisers to generate high quality components that would
actually improve the system’s performance. The data used to
classify the operating environment and the system’s input are
common for the two modules, but the code synthesisers may
require further data, such as the specific input for the target
component. As the self-improving system runs and collects
more data, the better the quality of code produced by the
synthesisers, which moves the system forward towards its
optimal composition for the given operating condition in a
complete autonomous fashion.

III. CHALLENGES

There are several challenges that have not yet been fully
investigated in the self-improving module. In [2] there is a list
of challenges to implement this module, with problems ranging
from classifying operating environments to rapidly navigating
through a large search space of possible software compositions.
These challenges are listed and discussed in [2] and [3]. This
section, however, focuses on the challenges of integrating the
existing self-improving module with a code synthesiser, and
of the code synthesis process itself.

The main challenge related to the self-improving module
is the collection of data from the live system to be used
in the code synthesiser. This challenge unfolds in two sub-
challenges: i) controlling the volume of data to be collected,
and ii) the definition of which data to collect. There is a
trade off between impacting the system performance, and the
quality of code synthesised when controlling the volume of
collected data. Large volumes of data often lead to better
quality of code produced by the synthesiser, and at the same
time, the collection of high volumes of data from a live
system highly impacts the system’s performance [7]. Balancing
this is extremely challenging, especially when synthesising
components for multiple parts of the system.

The definition of what data to collect has a direct impact
on the quality of synthesised components, mainly because
the data dictates how the synthesiser optimises the generated
code. If any important feature of the environment or the input
being handled by the component is not collected, the produced
components will not perform as desired. In fact, the fabricated
component is likely to perform even worse than previously
available ones which instead of improving the system, adds
more useless possible compositions for the online module
to learn. Furthermore, defining the data to be collected also
impacts the volume of data collected. For a big system with
many components, it is imperative to only focus on a subset
of specific components that are more likely to have more
impact on the system’s performance, instead of collecting
information from the entire system. Autonomously detecting
such components is also a very challenging and important task.

For the code synthesis module, considering code synthesis of
entire new component, presents the following main challenges:
i) a large search space, and ii) that the search space has no
natural fitness/loss landscapes. Firstly, even with constraints
put on the language to fabricate new components, in terms of
limiting program length and limiting cyclomatic complexity,
the search space grows exponentially with each line, with
the number of valid program implementations representing a
small fraction of the total space size. Finally, [6] suggests that
program space has no natural fitness/loss landscape. Unlike in
neural network training, where a gradient can be followed from
an initial condition to a low-loss point in parameter space, no
program synthesis technique has found a followable gradient.
Genetic programming relies on there being a way to move from
regions of low fitness to regions which contain the maximal
fitness solution, but there is no guarantee this is possible for
every component to be synthesised.

IV. CONCLUSION

This paper presented a framework connecting a code synthe-
sis module with self-improving and self-integrating module as
a possibility for the next generation of self-integrating and self-
improving systems. The framework consists of a machine-to-
machine loop between the online self-improving system, which
learns which systems composition maximises the satisfaction
of the systems goals, and the offline code synthesis module that
produces new components for the online module to integrate
to the system to improve its performance. We also presented
some challenges in implementing such framework that ranges
from the difficulty in defining which data to collect from
the system to the innate difficulties in synthesising software
code. Finally, we hope the community to find the discussed
challenges important and to join us in the effort of advancing
code synthesis techniques to be applied in self-integrating and
self-improving software.
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