Lorien: A pure dynamic component-based Operating
System for Wireless Sensor Networks’

Barry Porter
Computing Department
Lancaster University
Lancaster, England

barry.porter@comp.lancs.ac.uk

ABSTRACT

In this paper we examine the current state of the art in WSN
operating systems in terms of their general programming
models and runtime reprogramming features. While all OSs
admit the need — and provide some capability — for runtime
reprogramming, we find that no existing OS employs a uni-
fied approach at the dynamic end of the spectrum. In this
paper we present such a unified solution with a new OS de-
sign called Lorien. Lorien is a dynamic component-oriented
OS aimed at permitting component-based changes to itself,
including architectural change, throughout every aspect of
the system at runtime including its kernel. A Lorien system
typically permits 43KB — 90% — of program memory on the
TelosB platform to be fully reprogrammable within a unified
programming model, supporting rich future middleware and
systems research in the WSN field.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design;

C.3 [Special-Purpose and Application-Based Systems]:

Real-time and embedded systems

Keywords

Software components, dynamic, WSN, operating system

1. INTRODUCTION

The contribution of this paper is an exploration of pos-
sibility in the spectrum of operating system dynamics for
WSN hardware. We identify 3 aspects of current OS design:
the programming model employed in the general-case; the
programming model with which runtime reprogramming is
achieved; and the extent to which the OS is reprogrammable.

We find that while all OSs have some method of achiev-
ing runtime reprogramming — a requirement driven by the

*This work has been partially supported by the ICT Pro-
gramme of the European Union under contract number ICT-
2008-224460 (WISEBED).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MIDSENS 09, November 30 - December 4, 2009 Urbana Champaign, Illi-
nois, USA

Copyright © 2009 ACM 978-1-60558-851-3/09/11... $10.00

Geoff Coulson
Computing Department
Lancaster University
Lancaster, England

geoff@comp.lancs.ac.uk

long-term remote deployment of many WSN systems — none
of them do so using a unified programming model at the
dynamic end of the spectrum.

Our aim in this work was thus to explore a unified-model
approach supporting full system dynamics throughout the
entire OS and wider system. To this end we employ a dy-
namic component model which provides a general primitive
of change through the ability to load, interconnect and un-
load components. To the best of our knowledge this is the
first example of such a dynamic unified-model OS in WSNs.

In this paper we (i) introduce the spectrum of current
WSN OSs in terms of their programming models and run-
time reprogramming capabilities, (ii) outline our aim to ful-
ful an unfilled point in this spectrum at the extreme-dynamic
/ unified-model end, and (iii) present the key design points
enabling this with a new OS called Lorien.

This work is part of a longer-term project and serves to
promote & support rich future research in middleware and
general software systems for WSNs.

2. RELATED WORK

In this section we survey existing WSN operating systems
and develop a categorisation of them fistly with respect to
their general programming models and secondly with respect
to their runtime reprogramming models. We constrain our
survey here purely to operating systems, excluding middle-
ware and other higher-layer work. We are additionally here
only interested in system dynamics; OS concerns such as
concurrency models and network stacks are orthogonal and
beyond our scope.

We include in our survey TinyOS [7], SOS [6], Contiki [5],
Mantis [2] and LiteOS [3]. We contrast each with our target
OS which we call Lorien.

We first examine the general programming models of these
OSs, summarised in Figure 1. By “Image / Flat” in this
table we mean any system developed / compiled monolith-
ically. Here we see that three existing operating systems —
TinyOS, LiteOS and SOS — have something other than a
flat general programming model. TinyOS uses component-
based design via the nesC language, while both LiteOS and
SOS use module-based approaches in GNU C*. We put our
Lorien aims in the ‘Components’ category to gain the strong
architectural reasoning promoted by TinyOS; in contrast to
TinyOS however Lorien maintains its component separation

IThere are various definitions of a ‘module’; here we refer
to loadable units that employ an ad-hoc architectural com-
position approach rather than the strong provided/required
interface-based architecture of a component model.

Programming model | Image/Flat | Modules Components

oS
TinyOS X
SOS X
Contiki X
Mantis X
LiteOS X
Lorien X

Figure 1: WSN OS general programming models

after compilation.

Next we look at the runtime reprogramming models of the
same OSs, summarised in Figure 2. This property represents
the model available to the developer wanting to perform run-
time updates of the deployed code in the WSN, for example
when the WSN is deployed in a remote or dangerous location
which is difficult to physically access. Figure 2 shows both
the model with which that reprogramming takes place and a
guide to the extent of the system which is reprogrammable.

Of the OSs surveyed, two enable whole-system reprogram-
ming: TinyOS and Mantis. Because all TinyOS compo-
nents are compiled into a monolithic system image under
the nesC static component model, the system architecture
post-deployment cannot be ascertained and so the entire im-
age must be reprogrammed. In the case of Mantis the gen-
eral programming model is simply a monolithic one and the
reprogramming model follows this. Both such approaches
require a system restart in order to apply an update.

The remaining OSs surveyed are essentially designed as
an augmentable fixed image, where the size of the fixed part
varies between different designs. Contiki’s is typically the
largest as applications are usually developed as part of the
kernel image rather than as modules. These systems do not
require a system restart to apply an update but clearly are
limited in the extent of the system that can be updated in
this fashion. We also note that the augmentable parts of
these systems employ a different programming model to the
fixed part.

With Lorien our aim was simply to enable whole-system
reprogramming using a unified dynamic approach — an ap-
proach which does not require the system to be restarted to
apply an update. It is important that the entire system —
not just the non-kernel part — is updatable since we consider
it equally likely for the kernel to require an update as for the
rest of the system.

By using a dynamic component model to achieve this,
we gain support for both the runtime loading and unload-
ing of individual components and for runtime architectural
change of the component graph. This in turn enables us to
leverage components as a general primitive of change: not
only supporting the basic need for remote reprogramming
throughout the system, but also naturally supporting sys-
tem augmentation or even autonomous system adaptation?.

In reality Lorien does have a very small fixed part of the
system, as discussed shortly; this is however a simple boot-
loader rather than any form of kernel.

By contrast, FlexCup [8] for example is an approach
which allows reprogramming of TinyOS by (offline) image-
based component swapping, but does not allow architectural
change such as system augmentation.

TinyOS Image-based update

Sos Modules

Contiki Kernel + Application(s) Modules
Mantis Image-based update

LiteOS Modules

Lorien [Component-based updates

. Fixed part of system
Reprogrammable part of system

Figure 2: WSN OS reprogramming support

3. LORIEN

We now describe our Lorien OS, presenting a unified ap-
proach to general-case programming and whole-system re-
programming. We first briefly discuss what a component
is in Lorien and what we mean by a dynamic component
model. We then discuss how we designed a fully dynamic op-
erating system around this component model, in which every
part of the system is a dynamically replaceable component,
highlighting the key enabling elements of this design.

3.1 A Lorien component

Lorien is built upon the well-established OpenCom com-
ponent model [4]. A component in Lorien is a strongly sepa-
rated, self-contained unit of functionality — components are
in fact compiled separately and then composed into a system
as appropriate. The same compiled component can either
be composed into the initial system image or can be sent
later over-the-air.

A component is instantiable (i.e. multiple times) and ad-
vertises both its provided and required interfaces to a compo-
nent runtime, allowing third-party entities to reason about
its architectural dependencies. Figure 3 shows a typical com-
ponent, written in plain C, with its constructor, destructor
and function implementations. The constructor registers the
component’s provided and required interfaces, and links its
implementations of its provided interface functions to the
interface’s abstract functions. The destructor performs the
reverse, cleaning up this state. Components can also have
per-instance state which is not shown in this example, but
which would similarly be created and registered in the con-
structor, and detached and cleaned up in the destructor.

Such a component is compiled into a standalone, loadable
binary unit using the common position-independent ELF
format (known as a ‘shared object’ in Linux). Architec-
turally the component shown in Figure 3 appears as in Fig-
ure 4 with one provided and one required interface of the re-
spective types — a component can have 0-N of both kinds of
interface. A required interface must be connected to another
component’s provided interface to satisfy the dependency.

What makes Lorien’s underlying component model dy-
namic — as opposed to the static model of TinyOS — is that
components can be instantiated and destroyed at runtime,
and components can be connected and disconnected at run-
time. Furthermore components can be completely — and
independently — wunloaded from the system image at run-
time, or other components loaded and integrated into the
running system image. There are no constraints over how
much the system architecture — and system image — can
change in this fashion while running. A component runtime
keeps track of what the current architecture is, and all archi-

typedef struct recplist{
TRadio *radio;
} RecpList;
#define RECPS ((RecpList*) comp — > recpList)

int send(Component *comp, Component *binding,
unsigned char *msg, size_t len, TID to) {
/* ... encryption ... */
return CALL(RECPS — > radio — > send, msg, len, to);

/* ... other functions ... */

int construct(Component *comp) {
int err = OPENCOM_OK;
IRadio *ir;
/* register provided interfaces */
if ((err = reglnterfaces(comp, 1, “IRadio”, &ir, sizeof(IRadio)))
I= OPENCOM_OK)
return err;

ir — > send = send;
/* ... link other functions ... */

/* register required interfaces */
if ((err = regRecpList(comp, sizeof(RecpList), 1, “IRadio”,
sizeof(IRadio))) = OPENCOM_OK) {
dellnterfaces(comp, 1, “IRadio”);
return err;

}

return err;

}

int destruct(Component *comp) {
delInterfaces(comp, 1, “IRadio”); delRecpList(comp);
return OPENCOM_OK;
}

Figure 3: An example ‘secure radio’ component

tectural changes are made via this runtime to help enforce
(re)configuration safety.

3.2 Lorien: A pure dynamic component OS

Lorien is constructed from a collection of components like
that in Section 3.1. Just before we describe its design a
quick primer on WSN hardware is necessary for complete-
ness. Those very familiar with WSN hardware can safely
skip this paragraph. The main point we need to make is
that current WSN hardware platforms are organised as a
‘CPU’ (actually termed an MCU) with on-board program
memory. This program memory holds the entire program
executed by the WSN node, and generally takes the form
of solid-state flash memory that is re-writeable during pro-
gram execution. The procedure to initially upload a pro-
gram to a WSN node is to plug that node into a PC (e.g.
via USB) and use a special program which takes a compiled
image and injects it directly into the MCU’s on-board flash
memory. The WSN MCU is then rebooted and jumps to a
specific address in its program memory at which it expects
the first program instruction to reside (this address is hard-
wired). For the sake of this discussion this first instruction is
essentially the entry-point to the main() method in a C pro-
gram. Most WSN platforms additionally have a secondary
flash memory chip, external to the MCU, which is typically
of a much larger capacity than the MCU’s on-board mem-
ory. The MCU’s memory is executable while external flash
memory is not. MCU program memory is furthermore auto-
matically readable from standard C code as if it was a byte

| IRadio_ ___
int send(...)
interface

Secure
radio

| [Radio ____ required
int send(...) interf:
TID getlD() terface

Figure 4: Illustration of the component in figure 3

array without the need for any driver support.

The basic premise behind Lorien’s design is that the cur-
rently configured system — the collection of components cur-
rently in use — resides in the MCU’s on-board flash memory.
The external flash memory chip is used as a component pool
for all other components that can be used in the system if de-
sired. Components can be downloaded over the node’s radio
(or any other interface) and stored in external flash memory;
components can be individually loaded from external flash
memory into MCU program memory. Components in MCU
program memory can be instantiated, interconnected with
other components, and destroyed — and can be individually
unloaded (i.e. deleted from that memory area). Components
stored in external flash memory can additionally be deleted
if not required for loading at any point in the future. All of
this can be done without stopping / restarting the system.

The key challenge in Lorien’s design is how to jump from a
flat C program into a fully dynamic component-oriented sys-
tem, considering our aim for whole-system dynamics under
a unified model — meaning that the loader mechanism itself
needed to be a component, able to be loaded and unloaded
just like any other component, but which clearly could not
initially load itself. This kind of circular dependency is in-
dicative of the core challenge that we needed to solve.

Our solution bought us to a design involving two notional
parts: the system core and the rest of the system. Both
are constructed using the same kinds of components and
can be modified in exactly the same ways; the only differ-
ence is that the system core is specially composed by our
Lorien toolchain and requires some (fully automated) code
generation. Our solution therefore requires that the sys-
tem core’s source-code is available to our toolchain, whereas
the rest of the system is expected to be a collection of pre-
compiled components. Once Lorien is actually running on
a WSN node, system core components can be sent individ-
ually over-the-air and replaced — or indeed the architecture
of the system core entirely changed — in the running system
just as any other part of the system.

The main area of interest is therefore the system core, the
components of which we show in Figure 5.

The roles of these components are as follows: The system
core configurator is a special component which helps to boot-
strap the system. The component runtime holds and affects
the current system architecture as already discussed, and
the dynamic loader is responsible for loading a component
from external flash memory into MCU program memory,

System core
configurator

Component
runtime

Dynamic
loader

Required interface

MCU flash
file system

External flash
file system

Provided interface

Figure 5: The Lorien System Core Components

or for unloading a component from MCU program memory.
The MCU file system component is required to maintain a
filesystem within MCU program memory in support of ac-
tually loading and unloading components — a loaded com-
ponent is thus a file in the MCU filesystem. The external
flash file system similarly maintains a filesystem in external
flash memory, allowing components (or any other files) to
be stored, read and deleted from external flash memory.

In terms of dependencies, all components in the entire sys-
tem inherently have access to the component runtime; the
component runtime itself uses the dynamic loader when any
component requests that another component be loaded or
unloaded. The dynamic loader in turn uses the MCU file
system and external flash file system to perform the loading
and linking of a component (i.e. shared object) from ex-
ternal flash memory, or else the unloading of a component.
Both filesystem components are additionally available for
general use by any other components in the entire system.

The job of our Lorien toolchain is to create an initial sys-
tem image, for upload to a directly-connected sensor node,
which results in the instantiation of this fully reconfigurable
system architecture when it boots.

The crux of the solution lies in i) the offline generation of
the initial MCU filesystem state (i.e. its files and file table)
and ii) the generation of a boot configuration file describing
how the initial architecture should look and where the key
offsets into MCU program memory are to help build this
architecture. The initial MCU filesystem state generated
by our toolchain appears as in Figure 6 — as can be seen it
essentially pre-loads the key components, creating a kind of
snapshot in time reflecting a state as though these system
core components had been loaded by the system core itself.

The fundamentals section shown in Figure 6 contains the
fixed main() method of the entire system — the hard-wired
address to which the MCU jumps when it starts. This sec-
tion also contains a number of additional things which we
return to later. The boot procedure on a sensor node thus
works as follows:

3.2.1 Starting the configurator component

The fixed main() method reads from a special fixed ad-
dress in MCU program memory (an address generated in the
main() method’s code by our toolchain). The value found
at this address is itself an address in MCU program memory
of the system core configurator’s special boot () function —
a non-component entry function, which the main() function
now invokes having acquired its address. Unbeknown to the
main() method, the special fixed address from which it read
is actually within a file in the MCU filesystem; the contents

of this file can be modified later to change the jump address
if the system core configurator component is changed. The
location of this file of course cannot be changed but it has
no reason to as it resides at the very start of MCU program
memory, labelled as [A] in Figure 6.

The boot () function of the system core configurator com-
ponent has one task: Boot the component runtime, then
use the runtime to instantiate the system core configurator
component (i.e. itself) proper — the remainder of its du-
ties are then undertaken in its constructor which is within
component space.

3.2.2 Starting the component runtime

To achieve this the configurator component first reads
from a boot configuration file which details various parts of
the boot procedure, including the address of the component
runtime’s own special boot function. This boot configura-
tion file is initially generated and placed in MCU program
memory by our toolchain, and is found by the configurator
at runtime by reading from one more special fixed address
in program memory ([B] in Figure 6). This address is again
generated in the configurator component’s source code by
the toolchain and its contents can later be modified as a file
should the configuration file’s position change.

By invoking the component runtime’s own boot function,
the configurator acquires a reference to the component run-
time’s core interface through which all other tasks can be
performed (such as instantiating and interconnecting other
components). The configurator’s immediate task is to use
this interface to request that an instance of itself be cre-
ated, causing its own constructor to be invoked, in which
the remainder of its tasks are carried out®.

3.2.3 Building the system core

The configurator component’s remaining tasks are to load,
instantiate and interconnect the other components in the
system core. The boot configuration file instructs it on how
to perform these duties and the configurator simply follows
this list of instructions using a simple generic parser. The
configurator additionally performs relevant state injections
into selected components as instructed by the configuration
file, for example to inform the dynamic loader component
of the components that are already loaded and their file
handles for use with the MCU file system component.

We now have a system core which is fully instantiated,
interconnected, but more importantly is unloadable and ar-
chitecturally reconfigurable in general. Any changes to the
system core components are notified via the system core con-
figurator which updates the boot configuration file as appro-
priate — and if necessary its address-of file [B] — using the
MCU file system component. All system core components
have state transfer interfaces to allow staged hand-off to al-
ternative components. For example, a new dynamic loader
can be loaded by the existing loader, state can be transferred
into that new loader from the current one, and the new one

3In the interest of simplicity we have missed a step here
in which the configurator uses the component runtime’s in-
terface to inject state informing the runtime of the list of
components that are pre-loaded — by doing this the com-
ponent runtime avoids trying to actually load components
(with a non-yet-created dynamic loader component) when
instantiation requests are made since it can see that they
are already loaded into program memory.

~5KB 512b 2b 2b 1.4KB 6.7KB 5KB 4KB 4.8KB 500b
€L Es_ < § GEJ - (T-) “— ui_—J g 7))
2T | 42| 58|22 |85 | 82|85 |50 26% 5|25 T
£ - = S0 G2 S S| .5
) >0 | @c| o= | #c o|l=c | ¢ O0m@ =3 | Oc
1] »n 7)) %) — oE o C|l O+ o)) O C
EE | 0P| 02| 62|08 | ®2| 9 = 55 8@ o |co
© 2o | 22| 3|22 | cE|Ee|2E Ex3|A5 |E2 |52
2o |SE|SE| 85|55 |8 |55 |52 [85E|"2 |28 |C¢
SE|0°|<8|8°|0o8|Xa|S8 |0 |288] E|XS| 8
I [8l we | > i © © o |2 ©
=" ae| <B S 8 81z

MCU file system files (modifiable / deletable)

Figure 6: The initial image created by the Lorien toolchain for MCU program memory

can unload the existing loader. Such procedures work be-
cause a dynamic loader’s list of loaded components includes
itself — and similarly the MCU file system’s file table in-
cludes an entry for its own program code in MCU program
memory.

3.3 Additional details

In this section we address some outstanding questions
about how some parts the mechanisms described in Section
3.2 work — which we omitted in order to avoid distracting
from the general discussion.

3.3.1 The rest of the system

When the system core configurator finishes its own boot
procedure it reads from the boot configuration file the source
name of a component to use as the ‘next stage boot’ com-
ponent. This next stage boot component must provide the
IBoot interface, and the configurator instantiates the com-
ponent, acquires a reference to this interface and invokes its
boot () function, passing a reference to itself as a param-
eter through which other system core components can be
accessed.

The next stage boot component performs any of its own
boot duties in this function and calls a special function
setMain(), passing a reference to its own component in-
stance, and a reference to its own (component) main() func-
tion, as parameters. When the next stage boot compo-
nent’s boot function terminates, the system core configu-
rator’s boot function can also finally return, and the origi-
nal main() method of the entire system invokes the ‘main’
function last registered with setMain(), passing in the cor-
responding component instance reference. If a component
main() function ever returns then the original system main ()
function simply again invokes the last registered ‘main’ func-
tion, allowing a hand-off of next stage boot components. It is
within the component main() function of a next stage boot
component that the developer’s code resides — this function
could for example contain a thread scheduling or message
handling loop. This procedure is illustrated in figure 7.

We note that all other components can also of course pro-
vide state-transfer interfaces to enable them to perform sim-
ilar staged hand-offs to those employed by the system core.

3.3.2 The fundamentals section

The setMain() function is an example of a globally linked
symbol, and its implementation exists within the ‘fundamen-
tals’ section. The dynamic loader component has a list

1: instantiate next-stage
boot component

boot() System core IBoot vz
configurator o Y
2: call IBoot:boot() boot(...) {
;étMain(&main, comp);
.
‘. _______________

3: return from Lorien boot procedure

4/\ 4: invoke last-registered
< component main() function

nxtmain(nxtcomp)

bootloader main() function

» Xyz
b_ main(...) {

Figure 7: The ‘rest of the system’ handoff

of such globally linked symbol names — generated by the
toolchain depending on what the developer wanted to have
in the fundamentals section — and whenever it loads a com-
ponent it links all of these symbols with their correspond-
ing addresses. The other globally linked symbols of note
are setISR() and clearISR() which allow a component to
register interrupt handlers. The developer can additionally
include as many other functions as they would like in the
fundamentals section of their system (such a list is provided
to the Lorien toolchain when it is building the initial sys-
tem image). The number of functions included determines
the size of the fundamentals section, and so the size of the
non-replaceable part of the system since this program code
exists outside of component space.

3.3.3 Statistics

While we do not provide a detailed evaluation of Lorien
in this paper, we highlight some of the main statistics of
interest. The default Lorien system core (of course its com-
ponents can be selected as desired to trade off size, capa-
bilities and performance) takes 28 KB of program memory
on the TelosB platform, including the fundamentals section,
leaving 20KB for the rest of the system.

A typical size for the fundamentals section itself is around
5KB, including the most commonly used global symbols in

C (the mandatory bootloader part of this section is just
1.2KB). On the TelosB platform this leaves 43KB for dy-
namic components. A breakdown of ROM costs among sys-
tem core elements is provided in Figure 6.

The default system core additionally uses 3KB of RAM,
leaving 7TKB for the rest of the system. Given its capabilities
we believe that these figures are promising and compare well
with other reprogramming approaches (e.g. [8]).

3.4 Summary

The key enabling point to Lorien’s design — besides a dy-
namic component model — is the generation of an initial
image containing a snapshot of the system in time such that
a number of components are effectively pre-loaded in MCU
program memory as if the system core had loaded itself. Ad-
ditionally the fact that program memory is automatically
readable as a generic memory area, without the need of the
MCU file system component, is leveraged to allow a config-
urator component to read a file detailing how to boot the
system, with a collection of addresses in program memory
generated in this file by our toolchain to help do this.

This approach allows every component in a Lorien system
to be changed at runtime, and indeed any aspect of the
system architecture to be fundamentally changed using a
single, unified programming model.

4. CONCLUSION

We have presented a survey of existing WSN operating
systems in terms of their programming models and run-
time reprogramming support, and shown that no existing
OS shares a common approach across these concerns at the
dynamic end of the spectrum. We have explored how to cre-
ate such an OS and have described the design of Lorien, a
dynamic-to-the-core component OS which leaves on average
43KB — 90% — of TelosB MCU program memory available
for the dynamic component system.

Such a system can have any of its components remotely
and independently updated, including those in the system
core, can download new applications to add to the system,
or can autonomously perform adaptations using a pool of
alternative components all while the system is still running.
All of these capabilities are achieved using a dynamic compo-
nent model in such a way that the system can reason about a
component as a unit of change, and can more broadly reason
about the system architecture in terms of inter-component
dependencies and connections.

We are aware that we have not mentioned concurrency
models, scheduling, network stacks or a range of other tra-
ditional OS concerns; hopefully however the reader can see
that such concerns are beyond the scope of the Lorien sys-
tem core and therefore fit within the realm of ‘the rest of
the system’. A concurrency model for example can be en-
capsulated within a component and treated the same way
as any other component in the system — loaded, unloaded,
updated, etc.

Any number of additional components can be included in
the initial system image, as long as they will fit into MCU
program memory; further components can be downloaded
later into external flash memory. A common initial image
that we use for example is a basic shell component which can
be communicated with over the TelosB serial interface, and
to which we can send components to be stored in external
flash memory and then load and instantiate whichever of

these components represents the entry-point component of
the system (which will in turn load and configure the rest of
the system).

From the point of view of the developer the complexity
of Section 3.2 is completely hidden — as far as the average
Lorien developer is concerned they write (or select) a next
stage boot component and inform the Lorien toolchain of
which component this is as well as any other components
they would like to be included in the initial system image.

In future work we plan to perform extensive evaluation
of Lorien to establish the full cost of the unified dynamics
that it provides, and also develop system design processes
to help developers easily create dynamic systems with self-
configuring properties. Already however we believe Lorien
supports rich future research in middleware and general soft-
ware systems for wireless sensor networks. Lorien is an open-
source project available for download from [1].

S. REFERENCES

[1] Lorien on SourceForge.
http://opencome.sourceforge.net /lorien/.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose,

A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson, and

R. Han. Mantis os: an embedded multithreaded

operating system for wireless micro sensor platforms.

Mobile Network and Applications, 10(4):563-579, 2005.

Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. The

liteos operating system: Towards unix-like abstractions

for wireless sensor networks. In IPSN ’08: Proceedings
of the Tth international conference on Information
processing in sensor networks, pages 233-244. IEEE

Computer Society, 2008.

[4] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan. A generic
component model for building systems software. ACM
Transactions on Computer Systems, 26(1):1-42,
February 2008.

[5] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In LCN ’04: Proceedings of the 29th
Annual IEEE International Conference on Local
Computer Networks, pages 455-462. IEEE Computer
Society, 2004.

[6] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and

M. Srivastava. A dynamic operating system for sensor

nodes. In MobiSys ’05: Proceedings of the 3rd

international conference on Mobile systems,
applications, and services, pages 163—176, Seattle,

Washington, USA, June 2005.

J. Hill,; R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked

sensors. SIGOPS Operating Systems Review,

34(5):93-104, 2000.

[8] P. J. Marron, M. Gauger, A. Lachenmann, D. Minder,
O. Saukh, and K. Rothermel. Flexcup: A flexible and
efficient code update mechanism for sensor networks. In
Third European Workshop on Wireless Sensor
Networks, pages 212227, February 2006.

[3

[7

