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Abstract

Overlay networks are emerging as the technology of choice for deploying new large-scale distrib-

uted services and applications. Despite being such a key technology, overlays have no coherent

strategy for failure recovery, employing a plethora of ad-hoc solutions.

This thesis surveys the state-of-the-art in overlay network and fault-tolerance research, exam-

ining the shortcomings of present approaches. It then proposes SONAR, a highly configurable

and adaptive distributed service, to provide generalised fault-tolerance to a wide range of overlay

networks. The design of SONAR is discussed, and its unique API is presented in detail—an API

enabling genericity of SONAR while permitting expressiveness of an overlay’s specific traits.

The heart of the proposal is then presented and discussed; a new kind of distributed repair

protocol, which leverages distributed consensus to provide a strong base from which multiple

kinds of repair can be dynamically selected and safely enacted at runtime. This in turn enables

adaptive repair, which can intelligently decide on the best course of action for each failure.

The proposed service is then evaluated in its ability to support several major and varied

overlays, showing that the approach taken is viable despite its genericity, and demonstrating the

powerful capabilities of an adaptive repair mechanism.

The outcome of this proposal is a re-usable service which can be employed by overlay devel-

opers to support repair in their overlay, successfully achieving a clean separation of concerns,

and leaving the developer to focus on the functional aspects of their design.
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1 Introduction

This thesis considers fault tolerance in overlay networks; it examines the current state of the

art in overlay network mechanisms to respond to crash-failures [28], the problems with these

approaches, and ways of improving upon them. In pursuit of finding improvements, existing

approaches to providing fault-tolerance services to general distributed systems are also examined.

Overlay networks [23]—commonly termed “overlays”—are virtual, software-implemented net-

works which abstract above another network. They provide specific functionality or scoping

beyond that available in the underlying network. As such, they exist between the underly-

ing network (commonly the Internet) and the application making use of the overlay’s targeted

functionality.

Example specialised functionalities provided by overlays are content dissemination [41], key-

based routing [76], and string-based resource location [83]. An application wishing to provide a

distributed service can then select an appropriate overlay network and deploy it to the relevant

hosts, then use that overlay to underpin the application’s needs.

To illustrate this, consider the need for a live media-streaming application to disseminate

content to a large number of hosts spread across the Internet. While IP-multicast may be able

to cope with this in a limited network, it is often not enabled, and is certainly not possible

today over the Internet. To solve this problem, such an application can incorporate a content

dissemination overlay in its deployment, and use this overlay to connect end-user hosts to the

media-streaming session in a highly scalable manner. Such a deployment is shown in figure 1.

As can be seen, a special piece of software (‘node’) exists on each host wishing to be part

of the overlay (i.e. media-streaming session), and those ‘nodes’ form logical links (e.g. unicast

TCP connections) with selected other nodes in the overlay. Data can then be forwarded from the

root node through to the leaves of the tree, by using only the standard capabilities of end-user

hosts. The logical links maintained by the overlay network form its topology—the overlay shown

in figure 1 has a ‘tree’ topology.

Overlays in recent years have rapidly evolved in complexity and the service they provide, and

overlays themselves can be configured in an overlay stack, providing composite services [13, 30].

As well as end-system multicast, some examples of the diverse uses of overlays today are for the

12



Figure 1: (a) An overlay deployed on selected hosts across different networks, in which data
propagates from node ‘R’ to the other members of the overlay; (b) The architecture within a
single member host. To avoid clutter, physical network links are not shown.

provision of quality of service [77], massive distributed data storage [50], resilient communication

services [5], support of online gaming communities [40] and in support of voice-over-IP telephony

and conferencing [33]. All of this clearly points to the architecture illustrated in figure 1 being

the emerging general technique for deploying and supporting new services and applications, by

deploying virtual networks on-demand, with topologies and functionality designed specifically to

support a given service (or service ‘class’, like key-based routing [76]).

An important emerging technology in this regard is the overlay-building toolkit / deployment

environment [82, 30], which provides just this kind of capability. The overlay deployment envi-

ronment has at its disposal a wide range of different overlay components, and in response to an

application request, is able to mix and match overlay components to build, and sometimes deploy

and maintain, tailorable overlay platforms for different applications. Such toolkits are therefore

considered as an important part of this work, and a domain in which re-usable fault-tolerance

components should operate.

1.1 Overlays and fault-tolerance

A crash failure (termed simply ‘failure’ throughout this thesis) in an overlay network is said to

occur when one of the overlay’s member nodes suddenly departs the system without warning.

Due to the nature of distributed systems, and particularly the Internet—with hosts appearing

13



and leaving with high frequency—having a failure response mechanism is almost mandatory for

a new overlay design to be taken seriously. While such a mechanism is sometimes natural to

an overlay’s design, in many cases it is presented as an ‘added extra’, such as the successor list

and replication in Chord (see section 2.1.2) or the added-on ancestor list in Overcast (see section

2.1.1).

This practice has three major shortcomings:

• It frequently results in duplication of effort by designers working on similar kinds of overlays

such as multicast trees, who implement their own specific fault-tolerance mechanism which

is ultimately very similar to others that have been proposed for similar overlays.

• The approaches taken to fault tolerance by overlay designers—not usually being the focus of

their design—are typically specific to a single deployment environment and repair strategy.

With the phenomenal rise in the popularity of overlays as a re-usable system component,

however, the ways in which they are being deployed are growing well beyond the single envi-

ronment of ‘minimal-infrastructure, all-end-user hosts over the Internet’. As this happens,

the included failure response and repair mechanisms show shortcomings by not taking their

deployment environment into account to make more appropriate fault-tolerance decisions.

• The application/system designer considering which overlay(s) to use must understand the

nuances of the fault-tolerance approach of each potential overlay, and the fault-tolerance

approach may need to be manually tailored to specifically suit its deployment environment

and the criticality of the system.

1.2 Goals

The motivation of this work is to solve the three problems listed above. It proposes to do so by

separating the concern of self-repair from the core functionality of overlay networks. This has the

clear benefit of re-usability, speeding the development of new overlays, and reducing duplication

of effort by overlay designers.

Such an approach, focusing solely on fault-tolerance and not on how the overlay achieves its

particular functions, can more easily examine the wider field in which overlays exist, providing

14



a fully rounded solution capable of operating in many different deployment environments, able

to harness the particular strengths and weaknesses of each of those environments.

And finally, a common, well-understood and documented method of repair is provided, which

promotes greater understanding for those wishing to use overlay networks in support of their

applications or services. Instead of needing to understand and evaluate the various self-repair

mechanisms of a large number of functionally similar overlays, for example, a developer can

choose an overlay based solely on the particular way it provides its functionality, and then

configure the general self-repair service supporting the overlay with simple options like ‘amount

of redundancy’.

Achieving this would present the benefits of a re-usable, well-tested and configurable service

for the increasingly numerous developers involved in overlay-based work. The rest of this thesis

is an account of this work and its results.

This thesis attempts to i) provide a deep understanding of the problem space in chapter 2,

ii) propose a new approach to overlay network fault-tolerance with a generalised and adaptive

repair service in chapter 3, iii) explain how overlay networks can be sufficiently generalised for

management by an external service while preserving their functional diversity, in chapter 4, and

iv) provide a particular approach to generically repairing node failures in overlays, in chapter 5.

This work is then evaluated, and concluding remarks are offered.
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2 Background

This chapter discusses in detail i) overlay networks, ii) overlay-building toolkits / deployment

environments, and iii) dependability / repair services, demonstrating the context in which this

work was done and the problem space which exists. The chapter concludes with a brief analysis

and the resulting requirements of a generalised repair service.

2.1 Overlay networks

To demonstrate the diverse range of overlays available today, this section is split into four

sub-sections representing the major overlay ‘classes’ that exist today. Content-dissemination

overlays are first discussed in detail, followed by distributed hash table (DHT) overlays, then

semi-structured super-peer overlays, and finally unstructured overlays. These sections are further

divided into ‘functionality’ and ‘fault-tolerance’ sections, describing these two separate attributes

of each overlay. The list of overlays presented is far from exhaustive (there are simply too many

to discuss), but a balanced view of the different kinds of overlays that exist is represented as best

as is possible.

2.1.1 Content dissemination overlays

Functionality Content dissemination overlays [58, 84, 60] deliver streaming content to multiple

users in a scalable manner (as was illustrated in figure 1). They are typically organised as a tree

with the sender at the root. Each non-root node receives data from its parent, and forwards

it to each of its children using a point-to-point link. If IP-level multicast is deployed in some

sub-domains of the physical network, this may be leveraged where possible [16].

TBCP [58] is a good representative of this class of overlay. TBCP builds a single-rooted

tree, and new nodes join the tree by first contacting the root node on a published or well-known

address. The root node decides if it wants to accommodate the joining node as one of its direct

children; if not, it forwards the join request to its most suitable child. This process recurses until

the joining node finds a place in the tree. For performance reasons, TBCP attempts to build a

tree that reflects the structure of the underlying IP network—i.e. the nodes contained in each

sub-tree should tend to share IP-level locality. Decisions about whether to accept a node as a
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direct child or to pass it on are therefore made on this basis.

Another approach to maintaining a close correspondence between an overlay multicast tree

and the underlying IP topology is to employ a network metric such as round trip time between

nodes [60]. Other multicast overlays prefer to use the bandwidth of nodes to influence the

structure of the tree [86], so that higher bandwidth nodes appear closer to the root, with the

lowest bandwidth nodes as leaf nodes. Whichever metric is used during tree construction, the

obvious property desired following repair of a failure is for the post-failure tree structure to be

optimal with respect to those metrics.

There are several other multicast overlays worth discussing, which use notably different tree

building approaches or designs. Overcast [41] is an example of a server-oriented multicast overlay

(see also RMX [16]), where every node in the tree is a server managed or leased by the owner

of the multicast session—a suggested application domain being TV streaming. End-user clients

connect to a nearby server in the multicast tree to get content. The advantage of using managed

servers to form the tree is that additional services can be practically offered; servers can cache

content so that clients can request play-back from a specified time, and servers can stream content

to each client at different data and compression rates.

Narada [37] builds trees in two steps; it first builds a mesh of all participants in the multicast

session, then builds a tree over this mesh, rooted at the sender of the multicast data. The mesh

approach has the advantages of providing a more strongly connected graph, with redundant links

in case of failure, and of being able to sometimes make additional optimisations by forwarding

data for a multicast session through a mesh node not part of that session. It does, however,

maintain a full group membership list at each node in the mesh, which limits its scalability.

SplitStream [14] also uses two stages of tree construction. For a single multicast session, it

splits the data to be sent into n streams. For each stream, a separate multicast tree is built.

Of all the nodes in the overlay that wish to receive the multicast data, each node is ideally an

‘internal node’ of one stream tree, and a leaf node of every stream. The forwarding load of the

tree is then better spread across all participants, instead of the situation in other trees where

the leaves of the tree contribute nothing to the overlay.
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Fault-tolerance There are a number of ‘standard’ approaches in multicast trees to defend

against node failures [84]. One approach is for all the nodes below the failure point to re-join

via the root of the tree. The drawback of this is that the resultant bottleneck can cause traffic

to be significantly disrupted during the (possibly extensive) re-building phase.

An alternative is to have each node record a “backup parent”, or several, and re-join the tree

at one of these in case of failure. This carries the assumption, however, that the backup parent

chosen has enough spare capacity to accommodate the additional node(s).

Overcast nodes (i.e. servers) keep a full ‘ancestor list’ at each node to survive multiple

simultaneous failures in the same branch of the tree. A node which discovers its parent has

failed then examines this list to find a suitable live node to become its new parent. Due to the

expected limited size of the Overcast server tree, the scalability issues inherent in this approach

are deemed unimportant.

All of these approaches can be seen as ‘added extras’, as they contribute nothing to the ability

of the overlay to perform its functions. The diversity of repairs which can be used in a tree is

interesting—virtually any repair of a tree-structured overlay is valid as long as it remains a tree

(i.e. a graph with no cycles)—repairs therefore should aim to be as good as possible with regard

to performance, both in terms of short-term disruption and long-term throughput.

2.1.2 Distributed Hash Table overlays

Functionality The general purpose of this class of overlay is to provide an efficient and scalable

“key-based routing” facility in which a message can be routed in O(log N) hops (where N is the

total number of nodes in the overlay) to a target node that is designated by a given ‘key’. In

Chord [76], for example, nodes are organised as a logical ring, as shown in figure 2. Each overlay

node is assigned an ID by applying a uniform hashing function to its IP address, and keys are

generated using that same hashing function (normally by applying the function to a value to be

stored in the overlay). This hashing function implicitly creates a ‘key space’, and overlay nodes

are responsible for storing and serving the keys (and associated values) that map to their ID.

To cater for situations in which there are not enough nodes in the overlay to provide a one-

to-one mapping from keys to nodes within the key space, keys are stored at the node they are

numerically equal to or less than (and closest to). For example, the overlay shown in figure 2 (a)
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Figure 2: (a) A Chord ring (physical hosts and links are not shown), and (b) The topology data
and (key, value) pairs stored at node 9

would store the key ‘8’ at node 9, the key ‘9’ at node 9, the key ‘11’ at node 14, etc.

When a request is made to locate a given key, a Chord node receiving that request is tasked

simply with forwarding it as close as possible to its destination (unless it is itself that destination,

in which case the key location has been found and a response can be made). To facilitate this,

all Chord nodes have a ‘successor’ and ‘predecessor’ neighbour, representing the next highest

and lowest ID’d nodes in the overlay, thereby forming a basic ring structure, and allowing O(N)

progress of routing a key to a node.

Chord nodes also each maintain a so-called finger list—a list of nodes that are exponentially

distant around the ring. This is used for O(log N) routing towards a target node, in the best

case (i.e. assuming the finger list is both fully populated and up to date). When routing a key

to a destination, a node examines its successor and finger list, selects the node that will forward

the key closest to its final destination, then passes the routing request on to that node, which

performs the same operation recursively. One use of Chord is as a distributed data repository;

in such an application, a data item which is submitted for storage in the repository is simply

stored at the node whose ID is closest to a hash of the data.

DHTs like Chord are attractive because they scale very well—each node maintains a constant

number of neighbours as the overlay grows, and routing to a resource takes a known maximum

number of overlay hops. They also aim to guarantee that an existing key can be retrieved from

the overlay, in contrast to the less strongly structured overlays that are discussed in sections

2.1.3 and 2.1.4. There are various other works on DHTs using different overlay structures and

identifier spaces. Pastry [72] builds a similar ring to Chord, but takes network locality into
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account so that a route taken from one node to another in response to a query more closely

matches the physical network infrastructure (i.e. there may be less physical network hops per

query).

Tapestry [85] nodes are organised as a mesh, while CAN [68] uses an n-dimensional identifier

space as its routing structure; for example a 2-dimensional identifier space would be laid out

as a grid. A CAN node takes a ‘zone of responsibility’ within this identifier space, storing

all resources that map to that zone. Zones can be split and merged as nodes join and leave,

transferring resources between nodes as appropriate.

SkipNet [35] is somewhat different; whereas the above overlays do not give any control over

where values are placed, SkipNet has the design goals of being able to store data within the

administrative network domain that it belongs to, while still trying to ensure that data can be

located from any node in O(log N) overlay hops, independent of the size of the overlay (with high

probability). A SkipNet is a doubly-linked ring, and nodes are identified by string names instead

of hashed keys. This means that a user can identify their data using a prefix from a known node,

and the data will be stored at that node. Data can also be stored at a collection of nodes that

all share the same prefix to enable a degree of load balancing in the overlay. To achieve O(log N)

routing in this string-based namespace, nodes are arranged in alphabetical order of their names,

and nodes maintain the equivalent of a finger list (but for both directions round the ring) so that

large jumps round the ring can be made to get closer to the target name more quickly.

Besides SkipNet’s basic abilities to localise data to particular nodes, locality in DHTs is

generally seen as a problem. The IDs given to nodes are normally assigned in a uniform random

way, and as such a node’s neighbours may be physically distant. As a message is routed through

a DHT to its destination, this problem accumulates, and could result in the message taking a

much longer route than the direct path from source node to destination. While some attempts

have been made to reduce this overhead, it remains a topic of open research.

Fault-tolerance Despite their differences, all the above-mentioned overlays have a similar ap-

proach to dependability. In particular, when used as a data repository, they increase availability

of the data by storing copies of data items on the n nodes whose ID is “closest” to the hash of

a stored piece of data—in figure 3, n is 2, so node 9 for example copies its keys to nodes 14 and
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Figure 3: (a) Chord nodes copy their locally stored (key, value) pairs to n nodes clockwise around
the ring and (b) The failure of node 9 causes its keys to be re-located to node 14, successor and
predecessor links of nodes 7 and 14 updated, and node 7’s (key, value) pairs now copied to nodes
14 and 22 instead of 9 and 14

22. The response to a node failure is to update the links in the routing tables of the affected

nodes to reflect the change, and also to restore the number of copies of data items stored at the

failed node by copying them to further nodes.

The general disadvantage of this approach is that the self-repair algorithm permanently in-

creases the load on the surviving nodes and reduces the total amount of redundancy in the

overlay.

The phenomenon of churn is a well-studied problem in DHTs [70], and overlay networks

in general. Churn is the process of nodes continuously joining and leaving the overlay, and is

particularly problematic in DHTs because of the shared key-space of member nodes; a node

which leaves a DHT must have its keys transferred to a suitable remaining member, and a node

which joins may also cause transfer of keys from another node that now lie within the new node’s

ID space. The problem itself is unavoidable, as users are always free to do as they wish, but the

effects are an often-studied property for new overlays, and it remains an open area of research.

Again, it can be seen that fault-tolerance mechanisms in this class of overlay are deliberate

additions to the overlay’s core design, and again are not necessary to achieving its functional

aims. Finally, unlike tree-based networks, DHTs are strongly reliant on a very particular topology

in order to function correctly, leaving fewer repair-time options—either the repair maintains the

correct, exact topology of an ordered ring / namespace, or it does not.
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Figure 4: The topology of a typical super-peer overlay like Gnutella 0.6; leaf-peers cluster around
a super-peer, and super-peers handle search queries within their own mesh topology

2.1.3 Semi-structured overlays

Functionality This section discusses a class of ‘semi-structured’ super-peer based overlay net-

works, used for storing and locating resources. DHTs provide this functionality, but unlike

DHTs, semi-structured super-peer style overlays do not guarantee that a resource that exists in

the overlay will always be found. Balancing this deficiency, however, is the ability to perform

partial and wildcard-based searches of resources, rather than the situation in DHTs where the

exact key must be known for the resource to be found.

An example of this kind of overlay is Gnutella 0.6, depicted in figure 4. This topology is an

evolution of a more simple, pure peer-to-peer resource sharing protocol, created due to scalability

issues of the latter (discussed shortly in section 2.1.4).

In Gnutella 0.6, a subset of the overlay’s member nodes are selected as ‘super-peers’, either

by advertising this capability to the overlay or being promoted to this status by the overlay

protocol. Super-peers support a collection of leaf-peers, and store an index of the resources that

those leaf-peers are sharing. Super-peers also form their own super-peer network, and when a

leaf node submits a search for a resource, its super-peer examines its own resource index, and

also forwards the search to the other super-peers it is connected to. Such a search is flooded

through the super-peer network for a given number of logical (overlay) hops, and all results are

returned to the originating leaf-peer.
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Leaf-peers may then communicate directly with each other to actually transfer resources. In

real-world systems, unstructured or semi-structured peer-to-peer networks like Gnutella are more

popular for resource sharing, mainly because of their ability to perform partial / nearest-match

string-based searches for resources. However, they have other advantages, including an inherent

load balancing—popular resources are downloaded and shared at many peers, which spread the

load of other peers downloading those resources. In Chord, however, a single node would hold

a popular resource, servicing all requests for it. Further, in Gnutella, a peer decides for itself

which resources it will store and share, whereas in Chord resources are assigned to a node by

the overlay, which is perhaps not an attractive policy for end-users. The FastTrack/Kazaa [52]

protocol is similar to Gnutella 0.6, and has seen wide acceptance and use within the Internet

community.

Fault-tolerance In terms of dependability, the clear weak points in this kind of overlay are the

super-peers [83], which enable the functioning of the overlay. The failure of a super-peer requires

the leaf-peers it was supporting to re-locate to another active super-peer. As the number of

super-peers drops, the load on the remaining ones clearly increases, which tends toward the

emergence of bottlenecks in the overlay.

The locations of alternate super-peers can be provided to leaf-peers from the initial super-peer

they were connected to, or can be listed for example on a website, showing well-known super-peer

sites, for manual end-user lookup. Unfortunately, there is little published work on fault-tolerance

approaches for super-peer systems at present—and again, they represent an added-extra beyond

the core functionality of the overlay.

2.1.4 Unstructured and randomised overlays

Functionality The kinds of overlays discussed in this section have no defined structure, and all

nodes have equal levels of responsibility. Gnutella 0.4, the precursor to the super-peer architecture

discussed in section 2.1.3, was one of the first of this kind of overlay.

A node ‘joins’ a Gnutella 0.4 overlay by locating another active node (or peer), and making

itself a neighbour of that node. It may then acquire a neighbour list from that node, and store a

number of neighbours as its own. The new node will then send queries for resources by flooding
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a query to its neighbours. Once a query reaches those neighbours, it is recursively forwarded

through the Gnutella network until the hop limit of the query, or the edge of the network, is

reached. This creates a ‘search horizon’ for queries, such that they reach only a subset of the

total nodes in the Gnutella network—this means that one node has no guarantees of finding a

resource that exists on another node.

Freenet [17] is a hybrid Gnutella/Chord like system, where resources are stored by hashing

them to promote anonymity, and resources are stored on peers chosen by the overlay itself. Peers

are connected in an unstructured way, and queries are performed as an exhaustive search through

the network (as long as the hop limit of the query is not exceeded), though performance of this

searching improves over time for popular items as correct routes to their owners are remembered

by other nodes that have been used as part of successful routes.

Although very popular among end-users, it was eventually accepted that Gnutella-style flood-

ing overlays put enormous strain on the physical network [81], resulting in the super-peer archi-

tectures discussed in section 2.1.3. Such super-peer architectures also significantly increase the

‘search horizon’ of queries, due to the amount of results that can be acquired from a single super

peer (so that less search hops may attain many more results).

Both unstructured and super-peer resource sharing overlays are plagued by issues of ‘free-

riding’ [39]—the situation in which very few users share resources, with the majority of users

downloading resources without sharing any. Various schemes have been examined to try to

discourage this behaviour [59, 4], but like the issue of churn in DHTs, it remains an open research

question.

Moving away from resource sharing overlays, other completely unstructured overlays have

been proposed for a variety of roles, generally related to (probabilistic) information dissemination,

which come under the umbrella term of ‘gossip’ overlays.

In gossip-based overlays, each overlay node has a partial, randomly-generated view of the

entire set of nodes in the system [46]. It is often impractical to provide ‘perfect’ random views of

this kind, as this requires each node to have an accurate view of every other node in the system

from which to select its smaller random view. As a substitute, partial, ‘uniform-random’ views

are often used by selecting nodes from a partial list of the entire membership of the system—thus
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approximating a random sample taken from the entire membership. The size of the selection is

normally configurable, and using different view sizes alter the properties of the system (i.e. the

probabilities of being able to disseminate information to all nodes). The issues surrounding this

bootstrapping and maintenance of partial views are covered in detail in [43], where the authors

propose encapsulating the solutions in a general ‘peer sampling service’.

Assuming such partial views can be generated and maintained, a number of higher-level

services have been proposed to build on this (e.g. [42, 27, 44]). They generally disseminate

information by forwarding it to a random selection of the nodes in their view; it has been shown

that with high probability information forwarded in this way will reach all nodes in the system

[27].

Recent work in this area has proposed an architecture in which overlay nodes may have a

large scale of different roles between, and including, that of super-peer and leaf-peer [73]. In

this overlay, the highest ‘utility’ peers form the ‘core’ of the overlay, with lower utility peers

gradually further away from the core. Peers maintain a set of random links to other peers (from

a sampling protocol such as that described above), and a set of links to ‘similar’ peers, creating

the clustering of the ‘core’ and the ‘gradient’ of responsibilities to the edges of the overlay.

Fault-tolerance Early flooding overlays such as Gnutella v0.4 [80] made no provision at all

for fault-tolerance because it was assumed that resources would naturally be replicated over

multiple nodes, and that flooding would likely locate a suitable copy. Additionally, the number

of peers a node connected to was a simple way of improving its resilience to those peers crashing

or otherwise leaving the network.

This approach applies equally to gossip-based overlays—due to the random links that are

maintained and continuously updated in this kind of overlay, they are inherently resilient to

node failures, and unlike all of the other overlays discussed in previous sections, have no ‘added

on’ resilience approach which clearly operates in addition to the basic overlay protocol. However,

it should be noted that protocol-based schemes for ensuring persistence of data at nodes in this

kind of overlay are less well developed than those for ensuring communication resilience.
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Table 1: Summary of overlays

Core Extended Multiple valid Multiple Workload Per-node

topology topology structures node types view

TBCP Tree None Yes No Child nodes Partial

Overcast, RMX Tree Star(s) Yes Yes Child nodes, Partial

client nodes

Narada Mesh Tree Yes No Child nodes, Full

forwarding support

SplitStream Tree None Yes No Child nodes Partial

(multiple) (per stripe)

Chord, SkipNet, Ring Fingers No No Key storage, routing Partial

Pastry

Tapestry Mesh None No No Key storage, routing Partial

CAN Hypercube None No No Key storage, routing Partial

Gnutella 0.6 Mesh Star(s) Yes Yes Index storage, Partial

query handling

Gnutella 0.4 Mesh None Yes No Routing, Partial

serving resources

FreeNet Mesh None Yes No Routing, Partial

serving resources

Gossip Mesh None Yes No Routing Partial

overlays

Table 2: Summary of overlays’ fault-tolerance

Approach Adaptivity Configurable Re-usability

to environment

TBCP None N/A No N/A

Overcast, RMX Ancestor list None No Other trees

Narada Alternate paths (mesh) Continuous No None

SplitStream DHT-layer support None No N/A

Chord, SkipNet, Successor list None Yes Other ring / hypercube DHTs

Pastry, CAN + replication

Tapestry Replication None Yes Other mesh-based DHTs

Gnutella 0.6 Alternate super-peer None No Other super-peer

site location overlays

Gnutella 0.4 None N/A No None

FreeNet None N/A No None

Gossip overlays Inherent (for topology) N/A Yes Other gossip overlays

2.1.5 Summary

The overlay networks surveyed in this section are presented with their major properties in table

1, with their fault-tolerance properties in table 2, based on their published literature. The

chosen properties represent the major characteristics of overlays in terms of topology, service

provision and scaling, as well as the re-usability and generic applicability of their fault-tolerance

approaches, which are the major factors of interest in this work.

In any practical deployment, any overlay network must have mechanisms in place to deal with

situations in which nodes fail—a representative selection of approaches has been presented in this

section for various different overlay networks, demonstrating the duplication of effort currently

involved in this area, the lack of re-usability and easy configuration options, and the lack of

adaptivity to their environment. This illustrates the benefits to the community that a general,

re-usable and adaptive solution could have.
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2.2 Overlay Deployment Environments

‘Overlay deployment environments’ are systems which use overlays networks as components, often

transparently, to provide higher-level services. They are of interest due to their extensive use

and composition of overlays, and their generalisation of overlay functionality to achieve this—an

environment with such a rich collection of overlay networks would benefit greatly from a common,

easily configurable fault-tolerance approach across all of the overlays, able to be automatically

configured as suitable for each deployed overlay.

They are also of interest because in many cases they provide a more resource-rich setting

for the overlay to operate in—different from the purely end-user host deployments normally

considered by overlay designers. In this setting, hosts exist in the deployment environment

beyond the purview of a single overlay, and these can potentially be harnessed if appropriate.

2.2.1 The Open Overlays Framework

The Open Overlays framework is a sub-layer of the Gridkit [31] architecture—a middleware for

building configurable large-scale communication infrastructure over diverse physical networks.

The overlays framework is responsible for configuring and deploying overlay networks at the

direction of higher layers, and as with the rest of Gridkit, is based upon the OpenCOM component

model [18, 20], allowing runtime reflection and reconfiguration.

Overlay nodes are constructed within this component runtime, and communicate with nodes

in runtimes on other hosts using proprietary methods (e.g. TCP sockets). Overlay nodes within

the framework have a well-defined structure; each overlay node has a control, state and forwarder

component. The control component manages the topology of the overlay, handling ‘join’ and

‘leave’ requests. The forwarder deals with routing messages through the overlay, while the state

component encapsulates any state required by the overlay. It is believed that this structure is a

good fit for all overlays, and the defined structure allows Gridkit to compose multiple overlays

in arbitrary ways to offer a wide range of configurable communication abstractions. An example

configuration of a complete Gridkit node is shown in figure 5.

To give a concrete example, an application may request from the interaction framework

(provided by the services layer) a publish-subscribe session over a given collection of hosts,
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Figure 5: The architecture of a Gridkit node, expanding on the open overlays layer, which is
hosting a Pastry and Scribe node, with the Scribe node re-using Pastry’s forwarder.

spread across an Ethernet and ad-hoc wireless network. In an Ethernet infrastructure, the

framework may already have deployed a Pastry Distributed Hash Table (DHT) to satisfy a

previous application’s requirements. For the hosts within this network, the framework may then

re-use the Pastry overlay (possibly adding some nodes as required) and layer a Scribe overlay on

top of it. For those hosts in an 802.11 ad-hoc network, there may be no overlays yet deployed,

and framework will select an application-level multicast overlay such as Narada to support the

publish-subscribe session in the ad-hoc network. Finally, a bridging point will be selected (i.e.

a host with dual network interfaces) between the Ethernet and 802.11 networks, and configure

a node at this point to deliver messages between Scribe and Narada (with appropriate header

conversion).

Residing within Gridkit, the overlays framework has access to the environment’s higher-level

services such as resource discovery, and is therefore potentially able to leverage a very wide base

of resources to perform its tasks—resources that are both within the scope of a specific overlay

(i.e. the member hosts), and external to that overlay, but known to Gridkit.

2.2.2 ODIN-S

Like the open overlays framework, ODIN-S [19] specifies a particular way of constructing overlay

nodes. Its design goal is to permit resource management between multiple overlay networks

in which a host is participating, and it is proposed that this is achieved using message filters

(incoming and outgoing).

A host using ODIN installs all of its overlay nodes within the ODIN framework, and all of
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those nodes use a common ‘communication manager’ layer through which to send and receive

messages. Overlay nodes themselves are architecturally separated into routing logic and topology

management components, which are analogous to Gridkit’s forwarder and control components

for overlays.

Using a common communication layer allows transparent management of some key resources

used by overlay networks through attached filters; the outgoing bandwidth used by each overlay

can be tuned by having an outgoing filter buffer messages that exceed the overlay’s upload quota,

and the CPU load of an overlay can often be tuned by having an incoming filter similarly buffer

messages (so that if an overlay is handling less messages per second, its CPU load should be

less).

This, in turn, allows different overlay networks to be prioritised (as entire distributed sys-

tems), so that a mission-critical overlay is always given priority of bandwidth and CPU, and a

less important overlay receives a more best-effort level of service. Various schemes are suggested

by the authors to achieve this while preventing starvation of lower-priority overlays.

While ODIN brings an interesting approach to inter-overlay resource management, it does

not offer anything else beyond the open overlays framework in terms of modularisation and re-

usability of components / overlays. Fault-tolerance (in terms of node failure) is not addressed as

a general concern.

2.2.3 JXTA

JXTA [82] (pronounced “juxta”, derived from abbreviating from the word ‘juxtapose’) is a gen-

eral toolkit for building peer-to-peer systems, and offers the developer a layered and modular

architecture with which to develop distributed systems, choosing which modules and protocols

to use and how to best configure them for the particular application.

JXTA is comparatively well-established, though again lacks any coherent approach to fault-

tolerance in its architecture. It also lacks the self-configuration of Gridkit, and the multiple-

overlay resource arbitration capabilities of ODIN. The work described in this thesis in terms of

a generalised, configurable and adaptive self-repair service for overlay networks, could be used

equally well in any of these deployment environments.
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2.2.4 iOverlay

iOverlay [53] is an evaluation environment for overlays, and focuses on a minimal interaction point

(API) between the iOverlay middleware and the overlays that are hosted within it. Overlays need

only use the send function of the middleware to communicate with other nodes. This simplicity is

intended to make the development of overlays for the iOverlay framework as low-cost as possible.

iOverlay proposes an architecture with three layers; the message switching engine, the application-

specific algorithm (overlay protocol), and the application. It also provides a centralised user

interface so that algorithms can be visualised, monitored and debugged.

Overlays are written as C++ classes, implementing message processing functions to be called

from iOverlay, and iOverlay provides all low-level communication handling (e.g. socket program-

ming). Because iOverlay handles this, it can easily instrument all communications without the

overlay algorithm needing to know it is being done. A major focus of iOverlay is on an efficient

design for the message switching engine, as this supports all overlays in the environment; to this

end, messages between nodes are sent over the same connection for the lifetime of the application,

messages processed by the engine are never deep-copied (so only references are passed around),

and the engine has a small in-memory footprint.

Physical hosts can support multiple iOverlay nodes, and each node and link can be given

“virtual” bandwidth limits, so that experimentation options are not completely tied to the char-

acteristics of the hosts used. Nodes can be terminated at will by the user to observe the effects

of failures.

iOverlay (and similar work like X-Bone [79]) is a framework for user-driven experimentation

and evaluation of overlays, where Gridkit is a self-configuring middleware layer driven by real

application needs, automatically deploying/re-using overlays to meet a requested interaction

paradigm.

Again, iOverlay does not offer standard fault-tolerance mechanisms to the overlays deployed

within it.
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2.2.5 Specification-language frameworks

There is some work in specifying overlays using a specifically created language or style; two

examples of this are now summarised.

MACEDON [71] (Methodology for Automatically Creating, Evaluating, and Designing

Overlay Networks), and the follow-up MACE [47] systems, represent a common way to im-

plement overlays. A developer writes their overlay for the MACEDON framework as a finite

state machine (using a special script language) in which events trigger state transitions. MACE-

DON generates code from this specification, deploying nodes along with the MACEDON engine

library which provides transport and event invocation. Overlays are specified in a sufficiently

abstract way that the transport engine can use various real network protocols, or can operate

over the network simulator ns-2 [11]. Overlays can then be evaluated against one another using

a common programming model and underlying engine for each overlay, which hopes to promote

fairer comparisons between overlays, eliminating factors such as specific programming language

(and even programming style) performance issues.

Overlays can be instrumented to various levels of detail by the framework for evaluation,

and overlay composition is supported in a similar way to Gridkit, using similar standard APIs

for overlays to enable this composition. If an overlay specifies a need for failure detection,

MACEDON will detect failures on its behalf and report to the overlay when a node fails. The

overlay is then expected to handle the failure appropriately.

MACEDON, like iOverlay, is a framework for experimenting with and evaluating overlays,

rather than a middleware service supporting real applications.

The work in [8] proposes the use of database concepts to specify overlay networks (as does

P2 [54]). In [8], an overlay node is maintained as a database containing knowledge of a subset

of other nodes from the global topology. The application part of the node (i.e. topology cre-

ation) is written in a specially developed language called SLOSL (SQL-Like Overlay Specification

Language), which operates on the local database to define the overlay.

For example, part of a Chord overlay specification will define a view from the local database to

represent its finger list. Populating the local database with nodes to fill these views is therefore

a critical part of the approach; methods of acquiring this information are encapsulated in a
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‘harvester’. Harvesters are interchangeable and can use various gossip, broadcast or centralised

lookup protocols as desired. Remote nodes within a view can be ‘ranked’ by arbitrary attributes

such as latency or bandwidth to modify the performance of the overlay by selecting neighbours

according to an attribute.

This is perhaps the highest level framework in which to develop overlays, as everything but

the structural rules of the overlay is abstracted by the framework. Tools to move from this

high-level specification to actual implementation are yet to be fully developed, however.

2.3 Dependability Services

The ultimate goal of this work is to find a solution to generalising fault-tolerance for overlays—this

section surveys existing work on ‘dependability services’ to explore their possible applicability to

overlays. There are a wide range of different techniques which offer general failure handling capa-

bilities; this discussion focuses on those aimed at supporting crash-failures only, and ultimately

concludes that most are fundamentally unsuitable for overlays.

A number of techniques are often combined to provide fault-tolerance, and these are discussed

individually first, including checkpointing, replication and failure detection. Services that provide

all of these together are then discussed.

2.3.1 Checkpointing

Checkpointing [25] is widely used in dependable computing to record a ‘good’ state of a process,

and restore it to that state should it fail. Checkpoints are generally intended to be used for

deterministic processes; those which will eventually arrive at the state they were in when they

failed even when reverted to an earlier state. The aim with checkpointing then is to minimise

the amount of work that a process has to re-do due to a failure, while impacting the failure-free

performance of a system as little as possible.

A survey of checkpointing approaches is presented in [25], which is now summarised. Most

checkpointing concerns are around the problem of consistency—in a distributed system, if a

process fails and is restored to a previous good state, other processes that were interacting with

it may need to roll back to a consistent point in their execution history. Following the failure of

a single process, then, the entire system is required to be in a mutually consistent state when
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Figure 6: Coordinated and uncoordinated checkpointing approaches. Horizontal lines are process
timelines, squares are checkpoints and arrows are messages sent from one process to another.

recovery is completed, so that no processes record a message having been received when their

senders don’t record them having been sent and vice-versa. Such a state is known as ‘globally

consistent’, and the job of the checkpointing approach is to record globally consistent states

which are as recent as possible.

To achieve this, processes can either communicate to determine a globally consistent state

from which they can be quickly restored (coordinated checkpointing), or processes can indepen-

dently take checkpoints and try to establish a globally consistent collection of them at the time

of recovery (uncoordinated checkpointing). [25] surmises that the former approach has become

the most suitable one; although it requires additional control overhead to organise the taking of

a checkpoint, in modern systems this cost is negligible compared to the cost of actually saving

state, such that the overhead of both approaches during failure-free operation is almost the same.

It is argued that the very minor performance gain in uncoordinated checkpointing does not then

justify the problems of trying to locate a globally consistent point from them when a failure

occurs. Both approaches are shown in figure 6.

From the figure, it can be seen that if a failure occurs in process P1 (the large X shown),

in the coordinated approach the set of checkpoints C2(a, b, c) can be used to roll back all

processes to a consistent state. In the uncoordinated approach, the set of checkpoints C2(a,

b, c) is inconsistent because process P2 has recorded sending a message which process P1 does

not record having received. The same is true of the set of checkpoints C1(a, b, c) between

the processes P3 and P2. In this case, then, the three processes are rolled back all the way
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to their first checkpoints, which represent the only globally consistent state that was saved.

While coordinated checkpointing is generally therefore preferable, in a mobile environment it

may actually be more appropriate (or even necessary) to use the uncoordinated approach if

devices have limited or sporadic communication capabilities.

This same reasoning applies to overlays—taking a globally consistent coordinated checkpoint

of an entire overlay is simply infeasible, and usually unnecessary due to the way overlays work.

Consistent checkpointing is most suitable for long-running scientific applications (checkpointing is

successfully used in Condor [78], for example) rather than interactive, dynamic systems. Overlays

in particular offer a system model in which any node can normally perform the services of the

overlay, and it is simply the essence of that service which must be maintained—the members in

a tree to whom data must be forwarded, the key-value pairs in a DHT, or the resource indices

in a super-peer network.

As long as there are redundant copies of this information, the responsibility for delivering

these services can be assigned to other nodes without fear of inconsistency or corruption of the

system. Overlays can therefore be seen as often employing a kind of uncoordinated checkpointing

of highly specific state, without consideration of consistency between nodes.

2.3.2 Replication

Replication is an alternative to checkpointing to create resilient systems, though the two ap-

proaches are somewhat related. Using replication, multiple copies of a process are kept running

at the same time, so that if one of the processes fails then a replica can take over its responsibil-

ities. Checkpointing could therefore be seen as a kind of “offline” replication, keeping ‘inactive’

copies of a process, and as with checkpointing, the major issue with replication is consistency;

ideally all replicas of a process should be equally up to date at all times, but this can cause

significant overhead.

It is useful to consider replication in terms of a server which provides some service to clients.

This server is then replicated to improve its availability. Clients have two broad types of operation

that they can perform on servers; a write operation, which changes the state of the server, and a

read operation, which returns some value from the server without causing a state change. There

are three major classic replication schemes, shown in figure 7; active, passive, and gossip based.
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Figure 7: Active, passive and gossip-based replication schemes, showing client-server and server-
server interaction for a single request from the client

Active replication [26] (see figure 7 (a)) is targeted largely at providing fault tolerance, where

a group of server replicas is kept and client write operations are passed concurrently (often using

a multicast protocol) to each server in the replica group. If every server is executing exactly the

same requests in the same order, and those servers are deterministic, then they will always have

the same internal state. If a replica fails, the others in the group can continue as normal. Client

read operations can be handled by a single server in the replica group, thus offering some load-

balancing. Active replication is also useful for tolerating processing faults, since every replica

is asked to perform the same tasks—the majority result of an operation can be taken as the

accurate one and any others discarded (though, in this setting, it may be necessary for clients to

also multicast read operations to all servers).

Passive replication [66], shown in figure 7 (b), has the notion of a primary replica which clients

interact with, and backup replicas which are kept up to date by the primary but which never

interact with clients. The general approach is that a request arrives at the primary, which handles

it appropriately, and then makes the request known to the backup replicas. If the primary fails,

one of the backups can quickly take its place.

Gossip based schemes such as [51] offer relaxed consistency, using replication to improve

the general throughput of the system rather than purely for fault tolerance. The consistency

conditions are that the client must observe a consistent service from the replica group, as if there

was only one copy of the server to interact with. Provided that this holds, the processes within

the replica group can be in any state of consistency, with only the guarantee that if there were

no more client requests, the replicas would eventually become consistent through the exchange
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of gossip messages. This allows different clients to use different replicas in parallel for both read

and write requests, hence increasing the throughput of the server group. The failure of a replica

in this case could be problematic as some recent updates at that replica could be permanently

lost before they were gossiped to other replicas, but the degree of consistency between replicas

can be scaled based on the gossip interval chosen.

As with checkpointing, it is clear that classic replication is simply inappropriate for overlays—

largely due to the paradigm shift from ‘client-server’ to ‘peer-to-peer’, where every node may

serve both client and server roles. In particular, the model of running replicas of other peers

is not only unattractive to end users, but the resource intensity of it in terms of running the

additional processes and keeping them consistent is generally unsuitable.

2.3.3 Failure detection

Failure detection is at the heart of dependable computing, being simply the ability to know

whether or not an entity is still alive. Unfortunately, it is very difficult to know this about a

remote entity with any certainty—a node is typically probed with ‘are you alive?’ messages, but

the receiver may be too busy to respond to such a message quickly enough, or network congestion

could drop the probe or response packets, causing a node to be falsely declared as failed (a false

positive).

Failure detection research has focused on limiting the number of false positives while detecting

genuine failures as quickly as possible. A study of various approaches in [87] outlines some general

principles for designing a failure detection system, which are summarised in the following.

There are many types of failure detectors, the most simple approach being for a node to probe

its neighbours periodically and decide on its own whether any of them have failed (i.e. there is

no response to probes). This can lead to a large amount of false positives for the reasons outlined

earlier, and improvements can be made by having nodes share information about the liveness

of other nodes—in sharing schemes, all the neighbours of a node C may share information with

each other about the liveness of C. If a majority of C’s neighbours believe it has failed, it is

less likely to have been unable to respond to all of those neighbours, and all of the links to its

neighbours are less likely to have been congested, therefore there is a smaller probability of false

positive.
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The above scheme requires that the neighbours of C maintain links to each other, however,

which introduces additional control overhead. In some overlays this can be avoided where it

is appropriate for nodes to simply share information with their normal neighbours about the

liveness of another node. This approach requires no extra state, but relies on a sufficient number

of node pairs sharing a common neighbour, so that the pair is able to share information about

that neighbour.

Nodes can share positive information (i.e. I think this node is alive), negative information

(i.e. I think this node is dead), or a mixture of both. Generally, sharing positive information

increases control overhead in failure-free systems, but reduces the number of false positives. It

is also important to take into account the number of neighbours that the node C has when

deciding on a failure detection probe interval—ideally C should receive a constant rate (i.e. a

constant N every minute) of probes irrespective of how many neighbours it has, else it could

easily become overloaded with handling many probes. Finally, the interval of failure detection

probes is a consideration—if they are sent more frequently, a failed node may be detected more

quickly, but a higher control overhead is incurred.

Significant work on general failure detection methods includes [69], in which nodes gossip

probabilistically with each other to share liveness information instead of actively probing. Each

node maintains a list of other nodes that it knows about, and a counter for each, as well as the

last time the counter was incremented. Every gossip interval, a node will select one other node

at random from this list and send its own list to it with an incremented heartbeat counter for

itself. This basically serves as an ‘I am alive’ message from a node. This list is merged at the

receiver with the local list, using the highest heartbeat counter value for each member on the

lists. A node is declared dead by another node if it has not received a new heartbeat within

a given time. Due to the random selection of a neighbour, the protocol’s accuracy is based on

probabilities, and it is expected that every member knows about all others for these probabilities

to hold.

Taking the active probing approach, [34] has a node send a failure detection probe to a

neighbour (call it A), and if no acknowledgement is received from A, sends a probe request

to a random set of other neighbours, asking them to probe A and report their findings—this
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out-sourcing reduces the probability of false positives as already discussed. The approach can

guarantee an equal expected load on all participants, and has configurable speed and accuracy

parameters. As with the gossip approach, the view of participants maintained at each node is

important in the performance of the protocol.

Little is published about the failure detection approaches used in current overlays, but a

number of existing approaches are sufficiently well suited for general use, and are discussed as

such in chapter 6.

2.3.4 Fault Tolerant Software Architectures

Architectures which provide complete dependability services to other systems are now discussed—

they typically take checkpoints, detect failures, and restore failed modules from their last check-

point. They differ mainly in how these elements are executed and integrated into a complete

service.

Chameleon [6] is one such system, which is now described in some detail. Chameleon uses

objects termed ARMORs (Adaptive Reconfigurable Mobile Objects for Reliability) to provide

fault tolerance to hosted applications; these are essentially deployable services, where different

ARMORs will provide different kinds of services within the fault tolerant environment. All

Chameleon elements (i.e. belonging to the middleware) are ARMORs, and are “rigorously tested

modules”, such that ARMOR failures are expected to be the result of external problems.

The overall Chameleon execution environment is managed by a Fault Tolerance Manager

(FTM), installed manually on an arbitrary computer by a domain administrator. This (primary)

FTM creates a backup FTM, which monitors the primary and takes over if it fails. The FTM

manages membership of the Chameleon environment (i.e. the available hosts), accepts requests to

execute applications from users with attached availability requirements, and deploys appropriate

sub-managers and other ARMORs to control and monitor those application modules. The FTM

also maintains a history of execution for member hosts so that it can decide how reliable an

application will be if it is deployed on a given host, based on past experience with that host.

A daemon runs on each host that is a member of the Chameleon environment, which handles

the deployment and monitoring of ARMORs on that host, acts as a gateway for communication

between managers and all ARMORs on the host, and responds to heartbeat requests. The basics
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Figure 8: The main architectural elements of Chameleon. Additionally, each host shown runs a
daemon, plus a number of application modules and associated ARMORs. Lines represent ‘usage’,
such that the left SM (sub-manager) is using 4 hosts to execute an application. To avoid clutter,
the diagram does not show the fact that the FTM holds references to every host in the system.

of this architecture are shown in figure 8.

During failure free operation of an application, various ARMORs monitor it; a heartbeat

ARMOR is used to determine the liveness of hosts, an execution ARMOR deploys application

code and monitors its progress (reporting the result to the sub-manager), and a checkpointing

ARMOR periodically checkpoints the running application module.

When a failure occurs, it is handled according to which type of failure it is. Host failures

are dealt with by the FTM, which maintains a membership list of daemons available in the

environment. If a heartbeat times out, a host is presumed failed, and the FTM informs the sub-

managers owning the application modules and ARMORs that were on that host. Sub-managers

then restore application modules from checkpoints on alternative hosts.

Application module failures are ‘detected’ by execution ARMORs (the detection mechanism

is through the application signalling the ARMOR that something is wrong). In this case, the

application is re-started from its last checkpoint, or from the beginning of its execution. If the

same failure occurs multiple times, the application is moved to an alternative host and re-started

as before.

ARMOR failures are detected by daemons and flagged to a manager, which may either re-

install the affected ARMOR on the same host, or move it to another host. Chameleon is one

of several job-submission style environments where applications are registered as tasks to be

completed in a fault-tolerant manner.

Phoenix [48] is aimed at Grid environments, and uses ‘failure agents’ placed with various
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systems, which are responsible for discovering and classifying failures, and a failure manager to

make decisions on an appropriate response to a failure. The failure manager has access to a

knowledge base of past failures and responses so that it may be able to tune its future responses

based on the quality of past ones. Phoenix uses application-specific knowledge to try to track

the cause of an error—for example, error tracking for the failure to locate an URL may involve

checking if the DNS server is alive, checking if the DNS server has an entry for the URL, checking

the relevant networks and hosts are alive, ensuring the necessary protocols are available, and so

on.

The Meta system [57] is a framework for the management of distributed applications, which

advocates the separation of the functionality of an application from its management aspects—

notably performance and resilience to failures. A ‘control layer’ performs all management of an

application, and is basically a set of condition-action rules which define a policy. Applications and

their environments are instrumented with sensors and actuators which tie in to the policy rules of

the control layer. Example sensors are the measure of CPU load and the detection of failures, and

example actuators the ability to promote a process’ runtime priority, re-distribute work following

a failure or recover a process from a checkpoint. The policy language and sensor/actuator

integration are the major contributions of the work, and it uses the Isis [10] toolkit to provide fault

tolerance, using its message logging facilities to take checkpoints for critical system components.

DARX [56, 55] is another fault tolerance framework, aimed at providing dependability to

distributed multi-agent systems (e.g. [24]), which are composed of different types of agents

cooperating to solve a large and/or complex problem. DARX uses adaptive replication to offer

fault tolerance, instead of checkpointing as used by the systems previously described in this

section. A DARX server runs on every host containing an agent of the system to be made fault

tolerant. This server maintains a replica group of its agent (i.e. a group containing replicas only

of that agent), applying a replication scheme and size of replica group according to how critical

the agent in question is deemed to be. The scheme (e.g. active or passive) can be changed

dynamically as the ‘criticality’ and environment of an agent changes. A failure detection service

maintains a list of all agents and DARX servers, and each replica in a group has an associated

degree of consistency indicating how up to date it is likely to be. When a failure occurs, the
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replica with the highest degree of consistency is chosen as the new group leader.

In terms of overlay networks, all of these services have one major problem—they employ

specialised management elements which require their own servers on which to operate. This is

clearly in conflict with the peer-to-peer nature of overlays, which are designed specifically to

avoid reliance on any managed infrastructure. Any generalised service supporting overlays must

therefore itself avoid such a use of managed infrastructure, adopting a peer-to-peer architecture

to achieve its aims within the same constraints of the overlay itself.

However, the clear separation between redundancy, failure detection and recovery is a common

theme, and suitable for transferral to an overlay setting, in which these three concerns are

individually addressed and tailored according to their deployment environment.

2.3.5 Alternative approaches

Two other noteworthy approaches to dependability are now briefly discussed in order to provide

a glimpse beyond the more classical work in the area.

Graceful degradation Shelton [75] writes that “the term graceful degradation means that

a system tolerates failures by reducing functionality or performance”. Graceful degradation

research focuses on this ability of a system to tolerate subsystem failures until those failed systems

are repaired, and typically does not concern itself in how failures are eventually repaired. A design

framework is proposed in [75] for gracefully degradable systems, which is now summarised.

First, it is important that systems are built in a ‘gracefully degradable’ way; they should be

able to perform some of their functions even when parts of the system are missing. This requires

some careful analysis of the design of the system to elicit the configurations in which it can

provide some level of service. This analysis phase can make graceful degradation unattractive

for large and complex systems (the approach does not ‘scale’ from a design point of view), so a

different, non-exhaustive approach is proposed, where a system is divided into a set of subsystems

with an ‘input’ and ‘output’. The internals of a subsystem are then unimportant (and may be

a further collection of subsystems), the only concern is that the subsystem is capable to taking

some input and producing some output.

Every subsystem is allowed to communicate only through system variables, so the number
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and type of faults possible is reduced to errors surrounding these system variables; a variable

could fail to be updated (written to) in a timely manner, or a variable could be corrupted to

either an invalid or a valid but incorrect state. These conditions are often detectable, and the

response is to either make do without the value expected from the variable, or attempt to acquire

compensatory data from another subsystem.

The proposal presented in [22] is an example of using adaptive systems at the software

component level to gracefully degrade as failures occur. A system is seen as a set of “black-

boxes” which are interconnected through defined interfaces, and it is assumed that the exact

services provided by the block-boxes cannot be easily located elsewhere should they fail (e.g.

if tied to a particular piece of hardware). In this environment, it is proposed that the fault

management system operates on the connections between components instead of making the

components themselves resilient. If a connection is not satisfied, an alternative (but similar)

service is sought from those still running, and if necessary, connectors are inserted which adapt

the service provided to the one expected. Clearly a knowledge of what a “similar service” might

be is required at design time, as well as possible adaptation strategies, though these are not

covered in detail.

Software rejuvenation Rejuvenation has existed as a technique for many years, and is “the

concept of gracefully terminating an application and immediately restarting it at a clean internal

state” [38] while the system is in a failure-free state. The theory behind this is that the longer

a system is left running, the more likely it is to fail, so if it is periodically re-booted in a clean

state at an opportune (i.e. lightly loaded) time before any failures have occurred, the number of

failures at peak load can be reduced. Recent work in this area includes recursive microreboots

[12], which is now explained in some detail.

The concept of rejuvenation exists because most complex software contains programming

errors, which are a major source of downtime (and therefore a major source of profit loss in

businesses that directly rely on software for revenue). There are two main aspects of microre-

boots: 1) Building a fault propagation graph for the system, calculating the mean time to failure

(MTTF) of each component, and re-booting those components before their MTTF expires, and

2) Responding to failures at runtime, when a component becomes unresponsive or otherwise
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unstable; in this case the component is re-booted and the system re-assessed. If the system is

still unstable, possible fault propagation paths from the original component are examined, and

components at the other ends of those paths are rebooted. This expanding reboot continues

until the system is returned to a working condition, or the entire system has been rebooted and

still has problems (at which point user action is required).

This approach requires some strict rules for the applications it can support, which must be

built from so-called “crash-only” components. Such components can be forcibly shut down and

restarted with no warning, requiring no invocation of a ‘shutdown’ procedure, without losing any

data when this happens. Further, components must be able to tolerate momentary unavailability

of their connected components when they are being rebooted in this manner. This requires that

components have all of their persistent state on dedicated storage, which itself is built in a

crash-only way.

2.4 Overall analysis

A wide range of overlay networks have been discussed, along with their approaches to depend-

ability, which have been developed over time in an ad-hoc, per-overlay manner. Even with this

ad-hoc design of fault-tolerance measures, some strong similarities have emerged within partic-

ular overlay classes, evidenced most strongly in the tree-based and DHT overlay classes.

These two facts point to an opportunity to return to the issue of overlay fault tolerance in a

more carefully considered way, drawing on the similarities in some overlay repair schemes, and

on the work of the wider fault-tolerance community.

Examining overlay deployment environments has shown another perspective on the usage

of overlays, beyond the single case of a purely end-user host deployment. It has also shown

that overlays themselves are beginning to be generalised, and componentised, such that different

overlay types, and indeed different overlay components, can be re-used and composed to suit

a given application and deployment setting. What these overlay deployment environments do

not consider, however, is the componentisation, re-usability and composability of fault-tolerance

mechanisms alongside the overlays that they support.

This seems like an odd omission, given the long-established theme in the dependability com-
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munity of separating the concerns of an application’s functionality from its fault tolerance, either

via middleware, toolkits, or management frameworks. The clear benefits of this would be that,

as well as choosing how to compose an overlay’s functionality with the choice of components

and layerings, the user of such a deployment environment could just as easily then choose how

the resilience of the overlay to failures should operate, by choosing and configuring appropriate

resilience components.

Relevant fault-tolerance research has been discussed, demonstrating the state-of-the-art in

common approaches to responding to node failure in distributed systems. Classical approaches

to fault tolerance have been shown to be largely unsuitable to the scaling and dynamicity require-

ments of overlay networks, with the exception of failure detection approaches. A sample of more

recent work has been presented, and shown to be too specific to particular kinds of application,

constructed in specific ways.

All of this leads to the following set of requirements:

1. Any fault-tolerance mechanism supporting an overlay network must scale seamlessly with

that overlay.

2. Mechanisms should be re-usable and composable with a wide range of overlay networks—

generic components must be devised to support this, along with a generic API.

3. Mechanisms should take their deployment environment into account, considering resources,

failure models, and system criticality in their decisions—and further, should be able to

adapt dynamically as factors change.

4. Mechanisms should be generic across deployment environments as well as the overlays they

support—a scheme that functions in a purely end-user host environment should be funda-

mentally compatible with more resource-rich environments, but should also take advantage

of the latter when possible.

5. The approaches taken should be suitable for past and present overlay network designs, and

should as far as possible be forward-compatible with likely future designs.
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Figure 9: SONAR, horizontally composed with an overlay node

3 Services for Overlay Network Adaptive Resilience

This chapter proposes a solution to generalised fault tolerance in overlays, named SONAR. The

overall vision of SONAR is presented, as well as how runtime adaptivity of any dependability

mechanism is a feature of growing importance for near-future distributed systems.

3.1 Approach

SONAR consists of a framework of services—the overarching framework can load and configure

sub-services which address a particular area of fault-tolerance. An instance of SONAR resides

alongside each overlay node, as shown in figure 9.

This establishes the peer-to-peer nature of SONAR, which operates within the same in-

frastructure of the overlay itself, filling requirement 1 from the previous chapter. Every sub-

service is required to use only ‘soft state’ (i.e. state that can be re-built from instantiation

simply by existing in the environment), so that services are themselves inherently self-repairing,

and each service must be able to operate in an entirely decentralised manner, matching the model

of many overlays.

SONAR uses three major sub-services, following the model of the classic dependability ser-

vices discussed in section 2.3.4. These are i) a backup service, ii) a failure detection service, and

iii) a recovery service; these three are required in order to provide all aspects of self-repair for

overlays.

This section discusses these three services abstractly, in terms of their general functionality,

configurability and adaptivity, and the service model they must provide (i.e. their ‘contract’).
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3.1.1 Backup service

The backup service is used to redundantly store the vital information that constitutes an overlay

node—the details of this information are ultimately determined by the overlay (explained in

chapter 4), but encompass everything that might be needed to fully restore a node should it fail.

This typically involves the topological position of a node, expressed through its neighbour links,

and any ‘additional state’ required, such as DHT data in Chord. No inter-node coordination is

needed, with nodes simply making backups of their own state as appropriate. To meet the goal of

decentralisation, this backup data is normally stored on one or more appropriate ‘backup hosts’

in the overlay (other than the host of the origin overlay node), though other storage locations

may be used in different deployment environments, such as dedicated regional backup storage

servers.

Configuration and adaptivity The major configuration options for the backup service are

the amount of redundancy to use, and the locations to store that backup data. The manner in

which backup data is stored can also be a detail of the service’s implementation, for example

storing complete backups of nodes, or fragmenting their backups into smaller parts and storing

them separately.

The runtime adaptivity of the backup service involves the continuous self-configuration of the

amount of redundancy used and the locations used to store that redundancy, according to the

dynamics of the environment in which the overlay is deployed. The former would be a result

of the observed stability of the overlay, with a minimum level of redundancy specified by the

overlay deployer to suit their particular application.

The locations at which backup data is stored would depend upon two major factors: i) the

speed with which the data can be retrieved again if needed, and ii) the ‘safety’ of the location;

for example storing a node’s backup at a host outside that node’s physical network domain may

be wise in case the entire domain becomes disconnected from the rest of the network. In this

case, surviving overlay nodes would still have access to the relevant backup data in order to make

repairs.

Another aspect of safety is the observed stability of a host on which backup data may be stored,

and its projected time to failure based on knowledge accrued over time (i.e. the ‘availability’
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of the host). Several studies have analysed the behaviour of end-user hosts participating in an

overlay network [74, 9, 65], and such behavioural data could be used as a basis for judging the

availability of hosts in the overlay, alongside data collected at runtime.

Finally, the capabilities of hosts used to store backup data may be taken into account where

appropriate—in a diverse overlay deployment involving hosts of greatly differing capacities, those

with lower free storage capacity, for example, should obviously be asked to store less backup data.

Such adaptation of the backup service is essential in diverse systems where hosts of different

capabilities share the same overlay network—today’s systems are seeing increasing integration

and collaboration of powerful computers with smaller devices [36, 32].

In addition, with the enormous scale of many overlay networks, it is inevitable that different

regions of some overlays will experience different levels of failure and host availability—which may

further evolve over time, with many overlays intended to run almost indefinitely [50]—and thus

adapting the amount of redundancy both regionally in the overlay, and over time as conditions

change, is essential to permit the practical use of such large scale systems. Constant human

administration of such fine details in such a vast system is almost impossible, and the system

must therefore perform adaptation and configuration autonomously.

Service contract Generally, the ‘contractual obligations’ of the backup service come from the

needs of the recovery service. The backup service must store the essential data of each overlay

node (defined as the data necessary to fully restore each node), and be able to retrieve such data

when requested by the recovery service. Where the data is stored is an implementation detail,

but it is assumed that a host that was supporting a failed node will be inaccessible following the

failure, so other hosts should be considered for backup storage.

The specific recovery service implementation discussed later in this thesis has some particular

assumptions about the capabilities of the backup service, and these are discussed in section 5.2.1.

3.1.2 Failure detection service

The failure detection service is used simply to detect node failures in a decentralised manner.
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Configuration and adaptivity The abstract configuration options of a failure detector are

‘speed’ and ‘accuracy’, where one can be traded for the other. These options normally map to

the probe interval (whether this be for ‘active probes’, heartbeats or gossip messages), and the

time after which a node is declared as having failed, due to not having responded within that

period. Of course, the specific implementation of the failure detector, such as those discussed in

section 2.3.3, can also be part of the ‘configuration’, as appropriate to the deployment.

The runtime adaptivity of failure detectors relates to the continuous self-configuration and

adjustment of these configuration options—if a host is known to be slow, or the physical network

paths to that node slow or heavily congested, the amount of time the host is given before being

declared as failed can be increased. In addition, the amount of probes sent to such a node, if

an active probing approach is taken, may be reduced to alleviate some of the host’s workload,

increasing its chance of being able to answer one of the less frequent probes.

Such adaptation of the failure detector is essential because in any but the most small and

localised distributed systems, hosts and networks of varying speed and available processing ca-

pacity will be encountered, and a homogenous standard of failure detection will cause degraded

accuracy and performance as a result.

Service contract The contractual obligations of the failure detection service again come from

the needs of the recovery service. The failure detector must i) accept ‘registrations’ of nodes that

need to be monitored (i.e. the neighbours of an overlay node), ii) inform the recovery service

if one of these registered nodes is detected as failed, and iii) accept ‘active’ requests from the

recovery service to enquire if an arbitrary node is believed to be failed. The latter functionality

is used during repair operations, as will be discussed later.

3.1.3 Recovery service

The general behaviour of a recovery service component is, on learning of the failure of a node

from the failure detection service, to create some kind of strategy to repair the overlay. A detailed

discussion of the protocol developed with this work is deferred to chapter 5, but a brief overview

is provided here.

In order to allow diverse repair strategies, the repair protocol developed as part of this work
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centres around agreement. If all the nodes that depended on a failed node must agree about i)

the fact that it has failed, and ii) the action to take to repair the failure, then different repair

strategies can safely be chosen and enacted dynamically at runtime.

The approach taken also handles entire failed regions of overlay network as well as single failed

nodes—a necessity for true genericity. Finally, it is entirely decentralised, as can be the previous

two services, in order to both scale with the overlay network and remove any requirement of

managed infrastructure to use the service. Example repair strategies are that of restoring failed

nodes on alternative hosts, in a resource-rich deployment environment, or that of simply adapting

the structure of the overlay, and the distribution of responsibilities within the overlay, so that

surviving nodes take over the roles of failed ones, if operating in more resource-constrained

deployment environments.

If less varied capabilities of the recovery service implementation are sufficient to a particular

deployment, other implementations may be used for this component instead, such as gossip-based

topology management [42].

Configuration and adaptivity The configuration options of the recovery service are more

subtle than those of the previous two services, and centre on repair strategies—the choice of

which ones should be considered for use by the service, and which metrics are important to

the deployment. When adapting the overlay’s structure, for example, and re-distributing the

responsibilities of failed nodes among selected survivors, which survivors should be chosen for

the added responsibilities? Should it be those with higher bandwidth, lower latency, or higher

spare CPU?

In terms of runtime adaptivity, the recovery service’s aim is to make repairs such that the

short and long-term performance of the system is as optimal as possible, according to the needs

of that system, by selecting repair strategies in an intelligent way according to the dynamics

of the overlay’s deployment environment at the time the repair is required, and the metrics of

importance to the overlay, as mentioned above.

The recovery service has no contractual obligations to other services.
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3.1.4 Other services

The three services discussed above are necessary to provide all aspects of self-repair to overlay

networks. There are, however, other concerns that may be separated and generalised in a similar

way, to further ‘componentise’ the construction of overlay networks.

A fourth service considered in this work was a ‘cloning service’, proposed to continuously

optimise overlay networks, in as generic a way as possible. The general premise behind this service

is that it would examine the overlay’s behaviour, and the capabilities of its supporting hosts, and

re-distribute workload as appropriate. It is based around the observation that surprisingly few

overlay networks are suitable for deployment in heterogeneous environments, and expect that

each host is equally capable—many distributed hash tables behave in this way [76, 68, 72], and

indeed some attempts have been made to distribute workload more suitably in these overlays,

without changing the basic behaviour of the overlay itself [45, 67].

Many overlays supporting application-level multicast services also lack provisions for hosts of

greatly varying capabilities, leaving a large area of work unsuitable for diverse physical networks.

The so-called ‘cloning’ service was therefore designed to work in a Grid-like environment, and was

to create overlay nodes and re-distribute workload to them as appropriate. It used an abstract

‘workload’ element, defined in detail by the overlay network itself, such that overlay nodes would

advertise to their supporting service instance their current workload units.

The cloning service was then permitted, through special API methods addWorkloadUnit()

and removeWorkloadUnit(), to re-distribute this advertised workload as it saw fit. In multicast

trees, for example, new tree nodes would be created on suitable hosts, and units of workload

would be expressed by the overlay as child links—these child links would be re-distributed to

new nodes created on available hosts, and moved away from low-capacity hosts in the overlay,

to improve performance.

Another general service of interest may be one that disseminates information about the

deployment environment, such as host capabilities and current loading, host availabilities as

observed over time, and similar data about physical network paths. The other services could use

such data to determine where best to store backup data, how the failure detector would behave

towards different hosts, and which repair strategies to use. An overlay network, for its part,
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could use this data to determine node status and responsibilities (such as ‘super peer’ or ‘leaf

peer’).

While this thesis does not examine such further separation of concerns in any more detail,

it is interesting to imagine other areas which could be generalised into re-usable services in the

same way that self-repair / resilience is generalised in this work. The concepts described in this

chapter, along with a preliminary evaluation, were originally published in [61].
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4 SONAR APIs

This chapter presents the API that was developed for SONAR—how the service is able to

interact with and support various different kinds of overlay network. Designing an API for a

standard service presents three major challenges:

• It must be easy to use, so that application developers do not have to spend long under-

standing its use. While “ease of use” can be difficult to quantify, it is often analogous

to “simple” and “natural”—an API should have a simple method set, and those methods

should behave in a natural way to the target user.

• It must be expressive—while simplicity is desirable to allow quick use of a service, the

developer wishing to do more complex operations (either to support a more complex appli-

cation, or to use the service in a way more ‘precisely’ tailored to their application) should

be catered for.

• It must of course be generic—fulfil the above, while remaining applicable to as wide a

range of different applications as possible. Unfortunately there is often a conflict between

genericity and performance. A tailor-made solution to a problem almost always outperforms

a generic solution—the challenge is to make the generic solution performant enough that

the tailor-made solution is in most cases more effort to create than the performance gain

it will provide.

Because the API is the conduit through which SONAR sees the applications it is supporting,

this ‘view’ must therefore be sufficiently generic as to describe a large number of applications,

but sufficiently detailed to allow efficient management of the application.

To give an example, the detail of ‘successor’, and its semantics—the node in the overlay

with the next highest ID—is generic to the Chord and Pastry DHTs, but rules out many other

overlays if this detail is a necessary part of the standard API. Removing this detail from the API

allows other overlays like Overcast to use the service, but reduces the effectiveness of the service

when applied to Chord, as it cannot know the meaning of ‘successor’ when making repairs to

the overlay (unless some kind of ‘Chord plug-in’ is used, which, while maybe useful as an option,

defeats the purpose of a truly generic service if it is a requirement).
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Figure 10: A single interface encapsulates the three sub-services for self-repair, and specific
interfaces for specific sub-services can be optionally acquired via the unified interface if necessary

4.1 The API

The first challenge—ease of use—is approached in a number of ways, but primarily with a simple

overarching API. SONAR exposes a single interface, ISONAR, through which the overlay can

communicate with it.

The second challenge—expressiveness of the API—is achieved through ‘progressive disclo-

sure’; while the ISONAR interface can achieve many common tasks, it can also provide the

overlay with access to more focused interfaces if desired. This is illustrated in figure 10, where

the ISONAR interface is the general accessor for using the service, and the specific IPushBack-

upService1 can be used by requesting it through the general interface.

Finally, the genericity of the API is achieved by specifying a model which overlays must

conform to in order to be repairable by SONAR. This genericity is made sufficiently performant

by identifying the key state of an overlay, and by using a two-way API. At one side is an API

belonging to SONAR which permits exposition and guidance by the overlay with regard to its

key state elements, and at the other side is an API allowing management of the overlay by the

service, as illustrated in figure 11.

This enables the overlay to inform SONAR of important events with respect to its key state,

allowing SONAR to provide a focused service with respect to this state, rather than having to

meticulously ‘checkpoint’ an entire process, for example. Unlike some transparent checkpointing

approaches, SONAR does not therefore attempt to be fully transparent to the overlay. Rather,

overlay nodes and SONAR instances cooperate using explicit two-way interaction, whereby an

1The ‘push’ terminology is derived from the way that the overlay ‘pushes’ data to the service when a change
occurs in an overlay node’s state.
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Figure 11: A two-way API assists with genericity and performance

Figure 12: The interfaces used in the architecture: (a) SONAR’s main interfaces, and (b)
Interfaces to be implemented by overlay nodes. Methods return ‘void’ unless otherwise noted.
All parameters are ‘in’ only.

overlay node calls methods on its local service instance, and a service instance calls methods on

the overlay node it is supporting.

4.1.1 A simple, extensible API

Figure 12 shows the details of SONAR’s simple main API—the ISONAR interface, with five

methods. The figure also shows the overlay’s simple main API, encapsulated in the ISONARNode

interface, to be implemented by an overlay node.

These two interfaces are very lightweight, yet provide for most of SONAR’s functionality.

The figure also shows some of the extended interfaces of SONAR. For an overlay to be repairable

by the recovery service, it must implement the IRepairableNode interface, and for an overlay to

have its nodes be restorable (i.e. re-created on other hosts) by the recovery service, its nodes

must additionally implement the IRestorableNode interface.

Similarly, if the overlay wishes to use a ‘push’ backup service implementation, notifying

SONAR of changes in nodestate as and when they occur, it can acquire through ISONAR a

reference to a backup service which exports the IPushBackupService interface. This extensible
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Figure 13: API interactions: (a) An overlay node exposing its accessinfos and nodestates; and
(b) SONAR inspecting and adapting these (e.g. at repair time).

API architecture can potentially be taken as far as is desired in terms of the detail level which

it provides access to, in both ‘directions’.

4.1.2 An overlay model

As mentioned, in addition to implementing the relevant interfaces, overlays must conform to a

particular ‘model’ which SONAR understands. This model is still highly generic, and crucially,

allows overlays to express their unique properties without SONAR needing to understand them.

To conform to this model, overlay implementations are required to structure their nodes in

terms of two key abstractions: accessinfos and nodestates. The former describes the topological

position of a node, providing its ‘neighbour’ links, and the latter describes any additional elements

of state that is important to the overlay. Based on these abstractions, which are described in

detail shortly, SONAR can observe each node in terms of both topology and state, and can also

adapt the topology and state as required to carry out repairs.

Figure 13 depicts the full ‘model’ of an overlay node and its interactions with SONAR. Note

that the overlay’s implementation of IRepairableNode implies implementation of ISONARNode.

The below subsections define and discuss accessinfos, nodestates and the interactions between

the service and the overlay.

Accessinfos Accessinfos are used to expose to SONAR the connectivity of an overlay node

with its ‘neighbours’, and also to enable SONAR instances to communicate with each other.

This communication, which is useful for example to allow the service to send a backup of a

node to another node, is achieved using the overlay’s own topology, and enables the peer-to-peer
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operation of SONAR. In terms of its representation, an accessinfo is a record that refers to

an overlay node and encapsulates sufficient information to allow a message to be sent by the

overlay to that node. The internals of an accessinfo are entirely opaque to SONAR, and they

are assumed to be ‘serializable’ so that they can be marshalled by SONAR for transport and

storage purposes. Their opacity to SONAR permits overlays to construct these data items

entirely as they wish, thereby promoting the genericity of SONAR to a wide range of overlays,

while providing enough information to SONAR by clearly defining a ‘role’ for this data.

When an overlay node first comes into existence, it is expected to provide its local SONAR

instance with an accessinfo that refers to itself, which is used to identify and associate vari-

ous kinds of data with the node. This is achieved by calling ISONAR.registerNode(Accessinfo

nodeRef, ISONARNode n). This call also provides the SONAR instance with a local object

reference n on which it can call overlay-side API methods.

Following this self-advertisement, each node is expected to keep its local SONAR instance

informed about changes to its ‘local’ topology—i.e. its connectivity to neighbouring nodes. This

is achieved using ISONAR.neighbourAdded/Removed(Accessinfo n). With the accessinfos passed

in these calls, the SONAR instance is able to communicate with peer instances associated

with the given neighbours by using ISONARNode.sendToService(Accessinfo n, byte[] message),

illustrated in figure 14. This call requests that the overlay node send the given message to the

SONAR instance associated with the specified neighbour (nodeRef). The receiving overlay node

subsequently calls ISONAR.deliverMessage(byte[] message) to deliver the message to its local

SONAR instance.

The above deals with basic topology management and the enabling of peer-to-peer communi-

cation for SONAR. However, this basic topological description is often not enough to properly

capture the overlay’s subtleties because it does not take into account the various topological ‘roles’

that might be played by certain nodes in certain overlays. For example, ring-based overlays may

comprehend the roles of ‘successor’ and ‘predecessor’, while tree overlays may comprehend the

roles of ‘parent’ and ‘child’. To enable such semantic information to be expressed by the over-

lay, accessinfos can be ‘tagged’ by the overlay with arbitrary contextual information. As with

accessinfos themselves, the nature of this information is opaque to SONAR. Accessinfos can be
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Figure 14: Neighbours exposed by the overlay are used by the service to send data to other
service instances

compared by SONAR purely on the node to which they refer, or purely on the context which

they represent (a ‘standard’ comparison of two accessinfos is context-sensitive as well as node-

reference-sensitive). The overlay-side API provides this capability through the ISONARNode

interface, and this simple added information can be useful to repair strategies created by the

recovery service (discussed in section 5.3).

Nodestates Nodestates are used to encapsulate state that an overlay node is interested in having

restored when the node is recovered. They are optional and do not need to be used by overlays

that don’t need to maintain persistent state. Like accessinfos, nodestates are assumed to be

‘serializable’, and the internals of nodestates are opaque to SONAR.

Overlay nodes pass nodestates to SONAR using IPushBackupService.nodestateAdded /Re-

moved(Nodestate u). If there is a failure, IRepairableNode.addNodestate (Nodestate u) can be

called by SONAR on an appropriate target node to restore the data encapsulated in these

nodestates to the overlay (the issue of which node to select for this restoration is discussed in

detail in chapter 5).

Like the contents of nodestates, the implementation of addNodestate() is entirely up to the

overlay. For example, a DHT overlay node may expose each file stored locally as an individual

nodestate unit, and implement addNodestate() to map to the DHT store() operation, thereby

routing the data to the correct place in the overlay. Alternatively, a super-peer in a Gnutella-like

overlay may store its resource index as a nodestate, and implement addNodestate() as a ‘merge’

operation to merge any existing local resource index with the provided one.
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4.1.3 Repair actions

The above demonstrates how SONAR can modify the topology and re-distribute the state of

an overlay using a common ‘model’ with the general IRepairableNode interface. Beyond this

base API, additional repair strategies and overlay input are supported through “progressive

disclosure”; a set of optional interfaces available to the overlay developer wishing to have a

greater understanding of, or level of control over, the service’s operations. This is exemplified

here through the IRestorableNode interface, as shown in figure 12.

This interface is designed to allow failed overlay nodes to be fully restored on alternate

hosts, as opposed to compensatory topology modification. This strategy is useful in Grid-like

deployments, where resources may be more plentiful. Restored nodes must be provided with

the ‘node ID’ accessinfo of the failed node they are replacing (an accessinfo originally used with

registerNode()), achieved with the IRestorableNode.setNodeID() method. Both of these repair

types are generically applicable to a range of overlay networks; a discussion of this, and of the

mechanics of a safe, decentralised repair approach, are provided in chapter 5.

Following this example, different ‘repair strategies’ can be developed and used when appro-

priate, according to the current state of the overlay’s deployment environment, provided any

additional interfaces relating to specific repair strategies are implemented. Implementing such

interfaces allows the overlay to configure which strategies it would like to support (a runtime

examination by the service of implemented interfaces permits this), and indeed further expan-

sion of the overlay-side API can allow arbitrary overlay guidance on how a repair strategy is

performed, achieved by the strategy querying the overlay before repair enactment. A discussion

and evaluation of the benefits of dynamically selecting different repair strategies at the time of

repair is detailed in section 7.2.

4.2 Case studies

4.2.1 Chord

A detailed view is now given of the overlay developer’s task in making an overlay SONAR-

compatible. Chord [76] is used as an example in this section, as it is well-known and easy to

understand without being trivial—a further example based upon the TBCP overlay [58] is given
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Figure 15: An accessinfo implementation for Chord

in the following section. The presentation here is based on an actual modification of an existing

Chord prototype [1] as used in Lancaster’s Gridkit middleware.

Instantiating the abstractions Chord has two main topological characteristics: (i) a ring

structure, in which nodes are linked clockwise and anti-clockwise by ‘successor’ and ‘predecessor’

links respectively; and (ii) the use of per-node ‘finger tables’ that provide O(log N) routing for

any key (as the ring alone would only provide O(N) routing).

For the purposes of this case study, the ring structure is exposed to the service in terms of

accessinfos, and the finger tables of nodes are modelled in terms of nodestates. This latter choice

makes sense because it is known that the finger table will be refreshed shortly after a repair

anyway, and so backed-up finger table data is used only to speed up this process (providing a

fairly good jump start). However, it would also have been possible to expose finger tables in

terms of accessinfos by calling neighbourAdded/Removed() as each finger link changes, with an

appropriate ‘finger’ context (see below).

Having made this decision, the next step is to define an accessinfo class as shown in figure 15.

The Chord implementation uses Java RMI as its communication protocol, and so the RemoteNode

reference is a wrapper around an RMI remote reference (and Chord node ID). The new accessinfo

class also has a comparator method and a ‘context’ variable, which is used to tag the record with

contextual data of ‘successor’, ‘predecessor’ or ‘NodeID’. It is serializable for network transport

and flat storage.

A similarly simple ‘Chord nodestate’ class is then created (not shown) to contain a node’s
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Figure 16: The implementation of the ISONARNode and IRepairableNode interfaces for Chord

finger table; this is simply an array of remote references. This completes the definition of Chord

under SONAR’s model. This is clearly both Chord-specific (with customized contexts), and

implementation-specific (with an RMI remote reference used as the accessor detail).

Using the API To be repairable by SONAR, the Chord node implementation must implement

seven methods, shown in figure 16. SONAR is implemented in Java, and uses top-level Java

Objects to represent accessinfos and nodestates, but to simplify the presentation here ‘implicit

casting’ to the ChordAccessinfo class (and corresponding nodestate class ‘StoredFingerTable’) is

assumed in the provided code extracts.

Note the receiveServiceMessage() call, shown near the top of figure 16, is a remote method

call, from which the recipient overlay node calls deliverMessage() on its SONAR instance to

deliver the sent message (as in figure 14 in section 4.1). Finally, note in the addNeighbour

and removeNeighbour methods how Chord uses the context data that it attaches to accessinfo

records—this data is crucial to Chord, and without it no understanding would be possible of

whether a neighbour being added / removed by the service was a successor or predecessor.

In order to expose the overlay’s topology and state to the service, the overlay node imple-
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Figure 17: The modified implementation of the stabilize method in Chord

Figure 18: The implementation of setNodeID() for Chord

mentation also needs to call six methods on SONAR at various points during its execution.

registerNode() is called on startup, then a reference to the default backup service acquired

with getServiceInstance(), and topology information is then provided as it becomes available

(or changes) using neighbourAdded/Removed(). Successor changes occur within Chord’s stabi-

lize() method, of which an extract is shown in figure 17 (just 2 lines have been added, highlighted

in italics).

Chord’s notify() method was also modified in the same way to expose changes in the node’s

predecessor. In both cases, it was decided not to internally store neighbour links as instances

of the new ChordAccessinfo class, but instead to create them only when Chord interacts with

the service. This decision was made because an existing overlay was being modified, and it was

therefore desirable to make as few changes to it as possible.

Finally, when a Chord node updates its finger table, a similar procedure to that shown in figure

17 is again performed, but this time using the methods IPushBackupService.nodestateAdded/

Removed() of the selected backup service, where the old finger table is removed from persistent

storage with the service, and the new one added, as nodestate.

Optional additional implementation To allow the recovery service to choose at runtime

between topology-modifying and node-restoring repair strategies, the optional interface IRestor-
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ableNode was implemented, with its setNodeID() method as in figure 18.

This completes a version of Chord which can be maintained by SONAR, so that the service

provides all aspects of redundancy, failure detection, and recovery. It is believed that all overlay-

side instrumentation is trivial for the overlay developer, as demonstrated by the code extracts

above—in total, the modified version of Chord is 80 lines (10%) longer than the ‘standard’

version. Chord’s functional behaviour has not been altered in any way, so it is fully compatible

with existing applications.

Nevertheless, it is additionally possible for such applications, again with minor modifications,

to themselves take advantage of SONAR to ensure that their data is safe across node failures. To

achieve this, applications simply need to wrap their data as nodestates and call addNodestate()

and removeNodestate() on the backup service as data is added to/removed from the local node.

4.2.2 TBCP

To provide a fuller picture of how the API can be used by different overlays, an example of its use

by the TBCP application-level multicast overlay [58] is now given. TBCP is in many respects

simpler than Chord, with no data storage responsibilities, but as mentioned in section 2.1.1,

provides a richer set of repair candidates should a node fail (due to the many valid configurations

of a tree).

TBCP is also interesting in contrast to Chord because it has a single ‘distinguished’ node—

the root—which has special status in the overlay as the source of multicast data. For this section,

it is assumed that the tree is being used as a general group multicast structure, such that any

node in the tree can send data to the overlay via the root node (rather than the root node being

truly irreplaceable as the single source of e.g. a multicast video stream).

Instantiating the abstractions Most TBCP nodes have only one kind of information; the

identities of their child nodes. When data arrives at a TBCP node, it is simply forwarded to

these child nodes. The TBCP implementation used also provides each tree node with the identity

of the root node, should they wish to send data to the overlay. The root node, of course, also

knows that it is the root of the tree (a fact established by the TBCP protocol).

Child links are clearly a good mapping for accessinfo records, exposing the topology of the
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Figure 19: An accessinfo implementation for TBCP

overlay to the service. A TBCPAccessinfo class is therefore created to contain these links (plus

node IDs, as with Chord). This is shown in figure 19. Again, the TBCP implementation uses

RMI as its communication protocol, so the ITreeNode field represents a remote reference. As

with Chord, the new accessinfo class has a context attribute (set to either ‘child’ or ‘node ID’),

a comparator method, and is serializable.

The only other salient information a node may have is if it is the root of the tree. This is

implemented as a ‘nodestate’ record, for which a very simple ‘isRoot’ flag is used. Should the

root node fail, this flag will be presented to a suitable alternative node during repair, which may

then assume the duties of the root node (more detail on this procedure is given below).

Using the API As with Chord, seven methods must be implemented by TBCP to be repairable

by the service. These are shown in figure 20. Again, the implementation is abstracted slightly

for readability, replacing ‘Object’ with ‘TBCPAccessinfo’ or ‘RootStatus’ as appropriate.

To expose TBCP’s topology to the service, the overlay node implementation calls registerN-

ode() at startup, as is required, and acquires a reference to the default backup service with getSer-

viceInstance() (though technically only the root node needs this). The neighbourAdded/Removed()

methods are again used to inform SONAR about topology changes—TBCP’s joinTree method

deals with all such topology changes, and an extract of the modified version of this is shown in

figure 21. Again, just 2 lines have been added.

Finally, a node exposes its root status (if it is the root) by calling addNodestate() on the

backup service when it is made aware by the overlay protocol that it is the root node.
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Figure 20: The implementation of the ISONARNode and IRepairableNode interfaces for TBCP

Figure 21: The modified implementation of the joinTree method in TBCP
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Optional additional implementation To take advantage of resource-rich deployment envi-

ronments, it is desirable again to implement the IRestorableNode interface, permitting SONAR

to fully restore failed nodes on alternate hosts if appropriate. In the case of TBCP, this node

simply returns its own ID, discarding the incoming node ID, as it is not critically important to

maintain node IDs as in Chord.

Because root node repairs are permitted (such that root status is re-located appropriately if

the root node fails), this creates a subtle issue for non-root nodes, which have a reference to the

root node should they wish to send data to the overlay—if the root ‘moves’, they will have a

reference to the failed root node instead of the new, post-repair root. The implementation used

here circumvents this issue by using a middleware resource discovery infrastructure—if a root

repair occurs, the new root node advertises itself with the resource discovery service, and when

nodes wish to send data, they check with the discovery service that their reference to the root is

valid. Outside of this implementation detail, a simple solution would be for a new root node to

use the overlay to multicast its root status to all nodes as part of the repair.

There are of course some issues which SONAR does not address, in particular here the

problem of lost messages due to failures in a multicast overlay (i.e. messages sent while repairs

are taking place). This is generally out of scope of the work described in this thesis, but there

are other efforts to address such concerns (e.g. [49]), which could be integrated into SONAR if

desired.

4.3 Summary

This chapter has presented the API which allows SONAR to be used by overlay networks

(originally published in [62]), demonstrating the effort needed by overlay developers to take

advantage of the generic self-repair capabilities offered by this work. A detailed case study of

two different overlays has been provided, showing how SONAR can be used to support different

overlays—fulfilling requirement 2 (genericity & re-usability) from chapter 2.
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5 A SONAR Repair Protocol

The previous chapters have discussed the context of this work, the overall design and architecture

of SONAR, and the means by which overlay developers can use it to support node failures. This

chapter presents the detail of how the recovery service in particular works—how the failure of an

overlay node can be repaired in a generic and decentralised way, while allowing configurability

& adaptivity in the way repairs are made.

The approach taken in this work is first motivated, and the contributions it makes are outlined

in section 5.1. The protocol is then presented in section 5.2, and example repair strategies that

can be used—the major adaptable feature of the protocol—are discussed in section 5.3. Following

this, the protocol’s correctness is discussed in greater detail in section 5.4, and the chapter is

summarised in section 5.5.

5.1 Motivation and contributions

The design of the repair protocol was motivated by three major goals:

Separation of generic and specific aspects of repair. An overriding goal was to create a

foundation of repair; a mechanism which could be used as a common building block atop

which various repair strategies could be deployed and used. As such, repair is conceptually

separated into two parts: a generic part in which the extent of a failure is detected and

delineated; and a repair specific part in which a repair strategy is selected and enacted.

This is designed to support diverse environments and high degrees of configurability: in

this case supporting alternative repair strategies that make different tradeoffs depending

on their deployment environment.

Localised repair. It is important that only nodes in the locality of a failed node or failed section

are involved in coordinating its repair. This is essential to guarantee the scalability of the

approach. In very large overlays, such as Internet-scale P2P networks, it would be infeasible

to involve centralised services or nodes beyond the failure locality.

Aggregated failure handling. Rather than be restricted to treating individual overlay nodes

as the unit of failure detection and repair, the approach was designed to generalise naturally
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to deal with failed sections of overlay, thus being potentially capable of handling any severity

of node failures. This is especially beneficial where the virtual structure of an overlay

corresponds somewhat to the underlying physical topology, and thus the simultaneous

failure of adjacent overlay nodes is likely to be relatively common. Prominent examples

are ad-hoc networks, or multicast trees organised in terms of IP domains.

The key barrier to achieving generic overlay repair is the imprecise and dynamic nature of

the environment in which any repair mechanism must operate. In such an environment failures

may stay undetected for a long time, nodes may hold inconsistent views of which other nodes

have failed, and concurrent repair activities might conflict. Traditionally such problems have

been addressed in three ways: (i) by imposing some form of global coordination (e.g. consensus,

atomic broadcast); (ii) by relying on probabilistic approaches (e.g. gossip); or (iii) by employing

pre-defined repair strategies based on application-specific knowledge (e.g. tree-specific repair).

Unfortunately none of these approaches went well with the goals of this work. In particular, global

coordination does not scale, probabilistic approaches don’t lend themselves to consistency, and

pre-defined repair strategies clearly do not meet the need for genericity.

A fundamentally different approach is therefore proposed: The core of this approach to generic

overlay repair is a localised ‘agreement protocol’ that enables the set of nodes bordering a failed

section of an overlay (i) to discover and agree on the extent of the failed section; (ii) to agree on

a repair action to be taken; and (iii) to select a coordinator from among themselves to manage

the repair. This protocol can then be used as a common basis for the support of different repair

strategies. In this approach, however, a pernicious inter-dependency arises between those who

are agreeing (a group termed the ‘border set’) and that which they are agreeing to (i.e. the extent

of the failed section, which implies the constituency of the ‘border set’ itself). This phenomenon,

which is the major characteristic of the problem space that is addressed, is referred to as the

‘self-defining constituency problem’2.

The culmination of these features is a protocol supporting decentralised, collaborative repair

of an arbitrary distributed system—nodes with a mutual interest in a failure are put in contact

2Formally, this adds a second parameter voterSet to the classical consensus primitives of pro-
pose(value,voterSet) and decide(value,voterSet) [15]. ‘Self-defining constituency’ refers to the fact that in addition
to the traditional properties of validity, agreement, and termination it is required that agreement be reached only
if all non-failed members of voterSet execute propose(..,voterSet) with the same voterSet value.
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with one another, provided with a consistent view of the nature of the failure, and permitted

to create an agreed repair strategy, potentially based on information they provide to each other

using the protocol (such information is naturally and consistently propagated if desired). The

decided action can then be enacted safely—it is done so in isolation such that the action or its

sub-actions will not be repeated.

More generally, provided that assumptions hold, the repair protocol guarantees that every

failed node in the system will be repaired (using a repair strategy of the system’s choice) exactly

once.

5.2 The Repair Protocol

5.2.1 Assumptions

An overlay is considered as consisting of a potentially very large number of nodes that are de-

ployed in an underlying infrastructure network (e.g. the Internet). Nodes are identified using

overlay-specific unique identifiers. Provided the recipient’s underlying network address is known,

it is assumed that any node can send a message to any other node, and that message commu-

nication is reliable (i.e., barring network partitions, any message sent is eventually delivered;

TCP/IP semantics are sufficient). However, no particular timeliness properties are assumed for

messaging.

In terms of overlay topology, no global knowledge is assumed—overlay nodes are assumed to

be related to each other only through a ‘neighbouring’ relationship that constitutes the overlay

structure to be repaired in case of failure.

Nodes may fail at any time, but when they do so they do not subsequently interact with

the rest of the overlay (‘fail-stop’, as defined in [7]). Nodes may continue to fail as repairs are

ongoing, but it is assumed that such failures do not occur at such a rate that the protocol is

unable to keep up with them. It is assumed that there are no physical network partitions, though

logical (overlay) network partitions are naturally supported.

In terms of infrastructure, the existence of a distributed backup service is assumed, as discussed

previously, from which the state of a failed node can be obtained by any non-failed node. This

state includes the neighbour links of nodes, other repair-specific information (i.e. ‘repair logs’, as
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discussed later) and, optionally, application-specific data. To create redundancy, such a backup

service would likely re-use the same hosts that support the overlay itself, with one possible

implementation being a replication approach such as that described in [29]. It is possible that

the state returned by a scalable backup service might not be completely up-to-date, and for

simplicity it is assumed that overlays can cope with this situation (many current overlays are

explicitly designed to cope with minor inconsistencies due to the conflicting need to scale to very

large numbers of nodes). However, up-to-date repair logs must be consistently available from

backups.

Finally, the availability of per-node failure detectors is assumed, which are used to probe the

liveness/ failure status of other nodes. For theoretical correctness, a ‘perfect’ failure detector is

required (i.e. any failed node is eventually detected, and non-failed nodes are never suspected

of failure—no false-positives [15]). A weaker failure detector does not prevent the protocol from

working, but reduces its deterministic guarantee of repairing every failed node exactly once to a

probabilistic one, which is explored in section 7.1.2.

5.2.2 An overview of the protocol

1: procedure RepairProtocolp

2: loop
3: wait for some of p’s neighbours to fail
4: repeat
5: (BNodesp, FSectionp) ← ConstructFailedSectionView() . Phase1
6: SelectRepairStrategy(BNodesp, FSectionp)
7: Vp[] ←AgreeOnView(BNodesp, FSectionp) . Phase2
8: until Vp[] only contains accept . Agreement on the failed section
9: coordinator ← SelectCoordinator(BNodesp, FSectionp)

10: if p = coordinator then . I am the coordinator
11: PrepareRepair(BNodesp, FSectionp)
12: AddRepairToRepairLog()
13: EnactRepair(BNodesp, FSectionp) . Phase3
14: Send 〈coordinator, repairDetails, repairOK〉 to all nodes in BNodesp

15: RejectViewsContainingRepairedNodes()
16: else . I am not the coordinator
17: wait for 〈coordinator, repairDetails, repairOK〉 or coordinator ∈ FailedNodesp

18: end if
19: end loop
20: end procedure

Figure 22: Pseudo-code of the repair protocol when executed by node p

The overall repair protocol is presented in outline in figure 22 and illustrated in figure 23. The

protocol is executed by each node p in the overlay, and operates in three main phases. When p’s

failure detector reports that one of its neighbours (i.e. nodes whose failure p has a direct interest
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Figure 23: The three main phases of the repair protocol

in) has failed, it enters phase 1 of the protocol. p constructs a ‘view’ of the failure (which may

be one or more nodes), and discovers the other live nodes surrounding the failure (the ‘border

nodes’). This is performed by the ConstructFailedSectionView procedure, which returns a

failed section and border set, in FSectionp and BNodesp. Node p then chooses a repair strategy

for this presumed failed section with SelectRepairStrategy.

Next, node p executes phase 2 of the protocol with the AgreeOnView procedure. In this

procedure, p exchanges its view with the border set it has discovered, and those border nodes

negotiate until they come to a single agreed view. Border nodes whose views are rejected at this

stage will return to phase 1 to re-consider their view, and then re-enter phase 2—this negotiation

continues until all nodes surrounding a given failure come to an agreement about that failure.

Repair strategy information from SelectRepairStrategy is also disseminated during phase

2. Following agreement, one of the border nodes is selected as the repair coordinator.

In phase 3, the chosen coordinator executes the selected repair strategy. The coordinator

logs the intent of its repair in a local, per-node repair log to help prevent nodes being repaired

more than once. While the repair is being carried out, the other border nodes wait until either

they receive a repairOK message from the coordinator, or they detect that the coordinator has

failed. If the former happens, any local repair duties of non-coordinator nodes for the chosen

repair strategy are carried out, completing the repair, and if the latter happens, the protocol

loops back to the very beginning.

In the remainder of this section the above outline is expanded upon.
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5.2.3 Phase 1: Discovery of the extent of the failed section

In Phase 1, a node p is told about the failure of one of its neighbours, and calls Construct-

FailedSectionView (referred to above, line 5 of figure 22) to discover of the extent of the failed

section, which may consist of multiple nodes.

To achieve this, ConstructFailedSectionView requests from the backup service the

backed up state of a failed neighbour q, and from this extracts details of q’s neighbours. It

checks each of these neighbours with the failure detection service to determine their status. If

any are alive, they are added to p’s border set; if any are reported failed, they are added to

p’s failed set, and their backups are acquired from the backup service. These nodes’ neighbours

are then checked with the failure detection service, and this procedure continues until every

connection path from p’s failed neighbour terminates (transitively) in a node believed to be

alive.

As this proceeds, p checks any repair logs it finds in node backups, and ensures the resulting

view is consistent with past repair actions (updating backups it has found if necessary to reflect

these repair actions). If p neighbours multiple failed sections, it chooses the ‘highest ranked’ of

them. Ranking of failures is integral to the protocol, and allows arbitration between ‘competing’

views—i.e. failed section views proposed by different nodes that contain some, but not all, of

the same nodes in their failed sections.

The ranking relationship is defined as follows: (i) identical views have the same rank; (ii)

the ranking between non-identical views is assessed based on the number of nodes in their failed

section (so the view with the most nodes is ranked highest); (iii) non-identical views with the

same number of nodes are discriminated using node IDs.

When ConstructFailedSectionView returns, p has a border set (which always includes

itself) and a failed set, and is ready to enter phase 2 of the protocol. Note that because of the

progressive discovery of phase 1, the discovered failed section may contain nodes currently being

repaired, and may contain border nodes that have actually failed—the protocol is designed to

handle such problems.
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5.2.4 Phase 2: Failed section agreement and repair coordinator selection

In phase 2, a node p attempts to obtain agreement with its fellow border nodes on the extent of

the failed section to be repaired. This is a consensus problem, and its solution is inspired by the

consensus algorithm for strong failure detectors presented by Chandra et al [15]. This algorithm

has some key properties that make it suitable for use here, but it is significantly modified to be

able to deal with the particular problems here—the ‘consensus group’ is formed on-demand by

a progressive discovery mechanism (phase 1) and thus different initiators of the protocol may

develop different, conflicting views of the membership of this consensus group.

This phase of the protocol therefore has a group of nodes trying to agree with each other

on who belongs in the group (and by implication, what the failed section is). The agreement

protocol is captured in the AgreeOnView procedure, shown in figure 24.

Before being passed to AgreeOnView, all received messages are first filtered so that any

views containing nodes that have already been repaired according to the local repair log are

rejected (enclosing the offending repair log to assist the sender in its following phase 1). All

other messages are buffered in a message queue ready to be extracted by AgreeOnView.

1: procedure AgreeOnViewp(BNodesp, FSectionp)
2: Vp[k] ← ⊥ for all k 6= p
3: Vp[p] ← accept
4: OpposingNodesp ← ∅
5: for r ← 1 to the size of BNodesp − 1 do
6: Send 〈r, BNodesp, FSectionp, Vp〉 To all non-failed nodes in BNodesp \OpposingNodesp

7: PendingNodesp ← BNodesp \OpposingNodesp

8: msgReceivedp ← ∅
9: repeat

10: wait

�����������
for next msg in buffer msgk = 〈rk, BNodesk, FSectionk, Vk〉
such that ((BNodesk, FSectionk) = (BNodesp, FSectionp) ∧ r = rk) or

(BNodesk, FSectionk) is lower ranked than (BNodesp, FSectionp)

(stop waiting and goto 19 if all PendingNodesp are reported failed)

11: removeMessageFromBuffer(msgk)
12: if (BNodesk, FSectionk) is lower ranked than (BNodesp, FSectionp) then
13: Send 〈rk, BNodesk, FSectionk, Vk[p] = reject〉 To k . Reject lower-ranked view
14: else
15: msgReceivedp ← msgReceivedp ∪ {msgk} . Take opinion on my view
16: PendingNodesp ← PendingNodesp \ {k}
17: end if
18: until PendingNodesp = ∅ or all PendingNodesp are reported failed
19: Update Vp with received opinions in msgReceivedp 6= ⊥
20: Add to OpposingNodesp any nodes rejecting my view
21: end for
22: end procedure

Figure 24: The pseudo-code of AgreeOnView when executed by node p
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As in [15], AgreeOnView is structured as a series of asynchronous ‘rounds’ in which each

consensus participant (border node) sends its view to, then waits to receive a view message from,

every other node in its border set before proceeding to the next round. This ensures that all

nodes in a border set acquire uniform knowledge about the opinions (or failure status) of all

other nodes in that border set.

For this reason, the consensus algorithm which inspired this protocol was uniquely suitable—

it is actively inclusive and fair, such that every border node is asked to provide its opinion on

a proposed view, which allows the rejection mechanic and thus view arbitration when different

border nodes have different views. This also ensures that no information is ‘missed’ about other

views being considered concurrently or about other repairs in progress, as might happen if border

nodes only waited for opinions from a certain percentage of other nodes, for example.

When receiving the views of other border nodes, p will handle views which are either equal

to its own and in the same round, or are lower ranked (as in the ‘wait’ condition on line 10).

Those which are lower-ranked are rejected by p (line 13), forcing their proposers to re-consider

their views, and enabling arbitration between conflicting views. This mechanic is based upon

the assumption that the larger view is more recent (after more failures have occurred), and thus

more relevant. Since only one view with which to enact a repair may be agreed upon, one of the

views must be retracted.

Such cases can occur as in figure 25, where a particular node’s failure detector shows a higher

‘latency’ than others, or when border nodes fail soon after phase 1 without providing an opinion

in phase 2—in this case the rejection mechanism avoids potential deadlock whereby two nodes

await acceptance of their respective, conflicting views from each other.

P

Q

P

Q

A section of overlay fails and
is discovered by P, with border
nodes including Q.

The failed region continues to
expand, and its entirety is
discovered by Q in its phase 1.

P

Q

Q: I have a bigger view; abort and
restart your discovery

P: Here is my
view. What do
you think?

When Q receives P’s view in phase 2, Q sees
that it is lower−ranked than its own view, and
sends a reject message to P, making P return
to phase 1 to re−consider its view.

Figure 25: An example scenario using view rejection—in this case avoiding deadlock
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A round completes when messages related to p’s view have been received from all fellow border

nodes that have not yet been detected as having failed, and have not rejected the proposed view.

After each round, p updates its local knowledge vector Vp using the messages collected in the last

round. If a message says that a node m is rejecting p’s local view, p adds m to OpposingNodesp,

as it is not interested in this view. Rounds continue at p, however, to ensure that opinions are

propagated to all nodes that are interested in this view3.

When AgreeOnView finishes, if a node p obtains an opinion vector that only contains

accept tags, this means that all nodes in BNodesp have invoked AgreeOnView with the same

view and thus agree with p. In this case, p uses SelectCoordinator (line 9 in figure 22) to

select a repair coordinator, and proceeds to phase 3. If the opinion vector contains values other

than accept, the node returns to the start of the repeat-until loop on line 4 of RepairProtocol

in figure 22, returning to phase 1 to re-consider its view.

SelectCoordinator deterministically returns a repair coordinator for a view passed as a

parameter. Since all border nodes involved in the same instantiation of the protocol get the same

opinion vector from the agreement protocol, all nodes agreeing on a common view are guaranteed

to select the same coordinator. If, for example, border nodes score their repair designs according

to a common policy, this can be piggy-backed on accept tags in the view-agreement protocol,

along with an indication of each border nodes’ own capabilities, so that SelectCoordinator

can make an optimal choice according to various dynamic criteria (communication latencies,

energy reserves, available resources, etc.).

5.2.5 Phase 3: Enacting the repair

The node that was chosen as repair coordinator first performs any repair-strategy-specific prepara-

tory actions, then logs its repair intent, and finally performs the repair at line 13 of figure 22 by

calling the procedure EnactRepair. If some of the border nodes failed after agreeing on the

view, their backup data will be updated if necessary in future when nodes find this repair log and

conflicting ex-border node backups in phase 1, helping to ensure conflicting view convergence.

3Note that a practical optimisation between rounds is to ensure that opinions that nodes are known to already
possess are not sent to them again. If a node sees that all nodes in its border set know everything (after two
rounds, in the best case), and there is no missing information (i.e. ⊥), it can finish AgreeOnView. A complete
version of the protocol’s pseudo-code, including this optimisation, is given in appendix-A.
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This also permits a repair coordinator to fail while repair is in progress, and still have the

intent of that repair carried out from its repair log. This does require some care in the design of

repair strategies, and also relies upon the assumption that up to date repair logs must be found

in backups of nodes.

Once the repair has been completed, a repairOK message is sent to the border set, containing

information about local actions those nodes should take to complete the repair. RejectViews-

ContainingRepairedNodes is then called (on line 15) which checks the queue of buffered

messages, and as in the pre-AgreeOnView filtering mechanism, a reject message is sent to the

sender of any view message that contains nodes that have just been repaired (removing those

messages from p’s buffer).

The following section discusses several repair strategies that conform to this required behaviour—

that a log of their intent implies they will definitely be carried out.

5.3 Repair strategies

5.3.1 Additive repairs

This kind of repair encompasses any strategy that creates or restores nodes as part of the repair,

thereby adding to the overlay (even if only re-adding elements that had previously existed).

This is the most challenging form of repair, as it requires that a failed node not be restored

/ replaced and integrated into the overlay more than once, else the overlay’s structure and

functionality could easily become corrupted.

Example approaches The kinds of additive repair considered in this work are those in which

selected nodes from a failed section are restored on alternative hosts—a technique useful in Grid-

like environments, where additional resources are often available beyond those currently used by

the overlay.

In these instances, restoring selected nodes can fully maintain the capacity and availability

that the overlay had before the failure, placing no extra burden on surviving overlay nodes to

take on the responsibilities of failed nodes. The simplest form of such a repair is to restore every

failed node on alternative hosts. This is shown for TBCP in figure 26—the same repair style is

clearly also applicable to other overlays.

75



Figure 26: (a) Part of a tree overlay (b) A failure develops (c) A repair suggests restoring the
failed nodes on alternative hosts. Overlay nodes are identified with numbers, and physical hosts
with letters.

Figure 27: A partial restoration of a failed tree section

However, it may be just as effective in some cases to restore only some of the failed nodes,

if resource availability dictates that this is the best course of action. Consider again the failures

shown in figure 26. If the repair design for the failure shown in the tree-overlay observes that

the deployment environment has a resource discovery system, and this discovery system reports

a single available host of suitable capability, then a single overlay node can be restored, with

topology adaptation as shown in figure 27. The same tactic is again easily possible in other kinds

of overlays.

Overlay infrastructure that has been restored in this way can later be automatically removed

or consolidated according to a desired policy—for example, when all of the surrounding overlay

nodes have departed the system.

Scoring and strategy selection The ability for a node to consider many repair strategies

is useful in selecting the best possible strategy for the current dynamics of the deployment

environment, but the amount of time that is spent considering different strategies (i.e. in Se-

lectRepairStrategy) is clearly traded against the speed with which repair is made. The fact
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that multiple nodes (i.e. all those in a border set) are often involved in considering repair strate-

gies can be leveraged as a way to more quickly develop a rich set of repair possibilities—in this

case, use of resource-discovery can bias results by preference of their proximity to the requesting

border node.

Scoring of additive repairs can be based on many factors—generic ones being measures of

the combined physical capacities of the hosts proposed for restored nodes, and the speed of their

proposers for actual repair enactment. However, with additional overlay input through extended

APIs, scores can be weighted on factors more relevant to the overlay’s needs—in a multicast

tree, for example, bandwidth and latency of a candidate host’s network connections may be

more important that its memory and processing power.

Mechanics of repair In the SelectRepairStrategy method, a border node considering

making an additive repair will use a resource discovery service to locate suitable hosts on which

to restore selected overlay nodes. It will generate the accessinfo node IDs of the to-be-restored

overlay nodes, and save them for later use if chosen as the repair coordinator.

If chosen as the coordinator, the border node restores each selected node on the host deter-

mined by SelectRepairStrategy, and then sends the repairOK message to the rest of the

border set. On receiving this message, the border nodes examine the repair design sent (in-

cluding the pre-created accessinfos of new nodes), and update their failed neighbour links with

replacements to the designed alternative nodes of the repair.

The ability for SONAR to create accessinfo records, specifying attached context, is essential

here to ensure proper modifications can be made of overlay topology to include new nodes. As

an example, consider the SONAR instance at node 74 in figure 27. It must update the node’s

‘parent’ link to point to the restored node 42, instead of the failed node 33. To do this, SONAR

uses the API to request its overlay node to create an accessinfo that points to node 42 (using e.g.

node 42’s ‘ID’ accessinfo), and that has the context of its accessinfo that pointed at node 33. In

this way, the overlay will be informed with the addNeighbour API method that it should add a

new link to node 42 as a parent—without SONAR needing to know the meaning of ‘parent’.
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Discussion The major difficulty in this kind of repair is that the repair action is neither

atomic or repeatable. A further difficulty is that these kinds of repair are reliant upon their

chosen support infrastructure (from SelectRepairStrategy) being accessible (i.e. not failed)

until the repair is complete.

If, for example, 3 nodes are to be restored to repair a failed section, and so 3 hosts were

selected on which to restore them, if the 3rd host z is failed by the time the repair is in progress,

the coordinator cannot diverge from its planned repair action—i.e. it must perform the rest

of the planned repair action around z, and the surrounding overlay of the node intended to be

restored on host z must be connected to the (non-existent) node. They will then enter phase 1

for this node, and repair it separately.

If a coordinator did diverge from its logged repair strategy, its failure would mean other

border nodes may not be able to locate all restored nodes, if their locations differ from those

that are logged, therefore inviting corruption of overlay state.

This further mandates that, even though the node destined for z never actually existed,

its backup must exist, else this additional phase 1 cannot be successful. Backups of nodes to be

restored must therefore in fact be created and stored before the nodes themselves are created—i.e.

in the PrepareRepair procedure, just before the repair is logged. This fulfils the requirement

of repair preparation, in that it has no effect on the running overlay network (such steps can

only be taken after repair logging has been done).

5.3.2 Subtractive repairs

This kind of repair involves the removal of failed overlay elements and re-distribution of respon-

sibility among existing overlay elements to maintain functionality after failures.

Example approach These kinds of repair are suitable when resources beyond the scope of the

overlay are limited—particularly in end-user-host deployments. In such scenarios, the surviving

nodes in the overlay must take on the responsibilities of the failed nodes, and the overlay’s

topology must be re-factored to remove those failed nodes. In the repair protocol, the obvious

nodes to be subject to this re-factoring and re-distribution of responsibility are the border nodes—

the only questions being which border node(s) should take on the added responsibility, and how
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Figure 28: (a) Part of a tree overlay, with a failed region; (b) A single-hub subtractive repair
with node 31, and (c) node 33 as the repair coordinator

to re-factor the overlay structure between the border nodes.

As with additive repairs, there are many choices available in this kind of repair, for consider-

ation by SelectRepairStrategy. A simple ‘single hub’ approach is described here, in which

one of the border nodes in an agreed repair is selected to take on the responsibilities of all the

nodes in the failed section. This kind of repair is generic to many overlays, and is illustrated

for a tree-based overlay in figure 28, which shows the effects of two different border nodes being

selected as the ‘hub’ (and therefore the coordinator) of the repair.

Scoring and strategy selection Scoring of this kind of repair can again be based on many

factors; either generic, or specific to a certain overlay. For example, the coordinator may score

its ability to serve as a single hub based on how many neighbours its overlay node is currently

supporting, so the border node with the least neighbours (and often therefore workload) gets the

highest score. Specific properties such as bandwidth and link latency can be taken into account

simply with an overlay-specific strategy module.

Mechanics of repair An overlay node considering this kind of repair will evaluate its own

suitability as a single hub during SelectRepairStrategy, and enclose this evaluation in mes-

sages exchanged with other border nodes during phase 2. If chosen as repair coordinator, a node

simply assigns itself the workload from the failed section by adding each of the other border

nodes as neighbours (with appropriate context), and adding all retrieved nodestate to its overlay

node.

The coordinator then sends a repairOK message to the rest of the border set, as normal. On
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receiving this message, the border nodes examine the repair design sent, and replace their failed

neighbour links with links to the repair coordinator (again with appropriate attached context).

The ability of SONAR to create accessinfos based on the nodes they refer to and the context

embedded in them is again critical here, for a similar reason to additive repairs—when replacing

a node’s failed neighbour, that replacement link must be of the correct context so that the overlay

knows how to use the provided accessinfo. Again, using the API, this is a simple procedure.

Finally, because this kind of repair creates no new entities, the PrepareRepair procedure

has nothing to do, and so the intended repair is immediately logged, and then carried out.

5.4 Correctness, determinism and probability

Theoretical correctness of the described protocol means that ‘every failed overlay node is involved

in exactly one repair action’. Put another way, there is a time eventually when no failed node

is left un-repaired (i.e. progress), and at no point is any failed node repaired more than once

(safety). One approach to proving that these conditions are never broken is to examine all of

the scenarios that the protocol can be presented with, and demonstrate that none of them can

prevent positive progress or violate the protocol’s safety guarantees.

As this also serves to better explain the protocol’s design, this approach will be taken here.

Of course, this also requires proving that all possible scenarios have been accounted for.

The presentation here will therefore proceed with the phases of the protocol, beginning with

‘phase 0’, in which the protocol is waiting for a failure to occur. Using this approach, it is hoped

that the coverage of possible scenarios can be easily verified by the reader.

At all times, the repair protocol’s view of the ‘world’ is provided and controlled exclusively

by the failure detection and backup services, and so this discussion is guided primarily by the

view these two services provide, and of course the possibility of nodes failing at any time.

Finally, throughout the following discussion, both the ‘allowed’ scenarios are explored, as

permitted by the assumptions of the protocol, and ‘hypothetical’ scenarios—those which the

assumptions disallow, but are interesting to explore to discover why the assumptions are as pre-

sented in section 5.2.1. Hypothetical scenarios are indicated with italicised paragraph headings.
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5.4.1 Phase 0

The scenarios this ‘phase’ can encounter are relatively trivial, but are included for completeness.

The protocol is at this point waiting for one of its neighbour nodes to be reported as failed by

the failure detection service. It can still receive repair protocol messages from other nodes, and

this section aims to prove that progress cannot be impaired, or correctness compromised, at this

point.

Accurate failure report When the local failure detector reports the failure of a neighbour

node, phase 1 is entered. The proof for this is self-evident from the algorithm in figure 22; after

leaving line 3, there is simply no other path but directly to line 5, which initiates phase 1.

It is also clear that the protocol will not advance beyond line 3 unless a neighbour of p is

reported failed. The failure detector is at this stage interested only in p’s neighbours, and thus

will not provide notifications about the failure of any other nodes in the system.

Failure detection latency The failure detector class assumed for the protocol states that

any failed node is eventually detected, meaning that the failure detector can show arbitrary (but

finite) latency in detecting the fact that a node is failed. When a section of overlay FSi fails,

a border node p in phase 0 that is slower than other border nodes of FSi may receive phase 2

messages from nodes with ‘faster’ failure detectors.

When such messages arrive, they will either be simply buffered by p, or rejected if they refer

to nodes that p has been involved in the repair of. Buffered messages can only be removed during

phase 2 (line 11 of figure 24) or phase 3 (line 15 of figure 22), which can only be reached after

phase 1, thus supporting failure detection latency at this stage.

False positive (hypothetical) If the local failure detector of p falsely declares a neighbour as

failed, p will enter phase 1, as above. This is unavoidable.

5.4.2 Phase 1

While an algorithm has not been provided in this chapter for phase 1, it is sufficiently simple

that the description in section 5.2.3 is unambiguous4. Nevertheless, the progressive discovery

4Those interested in seeing pseudo-code for this phase are referred to appendix-A.
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Figure 29: (a) A failed region of overlay FR1, and the live nodes surrounding it LN1, (b) A node
p with a view containing some of FR1, due to the belief that node c is alive (and thus a border
node) due to failure detector latency

involved in this phase can cause a number of complex scenarios to arise, and again this section

aims to prove that all such scenarios are dealt with such that positive progress is always made,

and correctness is not violated as a result.

Failure detection latency During phase 1, p can be informed that a node c it inquired about

is alive, when in fact c is failed. p will then enter phase 2, and attempt to get agreement from

its assumed border nodes, including c. This scenario can be generalised as follows: There exists

a failed region of overlay network FR1, in which all nodes were transitively connected to one

another through the neighbouring relationship, and all nodes are actually failed. This is shown

in figure 29.

The live nodes surrounding FR1, shown as the set LN1, can in phase 1 either create views

that are smaller than or equal to FR1—smaller views are due to failure detection latency, as in

figure 29 (b). Whichever view size was established by phase 1, this view is carried into phase 2,

in which the node proposing it attempts to get agreement from its assumed border set.

Again, this is self-evident from the mechanism of phase 1, and the fact that phase 2 necessarily

follows phase 1.

From this position, three basic scenarios are possible, two of which are illustrated in figure 30.

Multiple instances of such scenarios are possible, with many different view sizes, but ultimately

equate to those shown in figure 30.

Condition (a) is a threat to the progress of the protocol, because node p proposes its view

FSp, expecting a response from node g in its border set, while node g simultaneously proposes
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Figure 30: (a) Node p has a view FSp which is smaller than the full failed section, but includes
node g as a border node; g itself discovered the entire failed section FSg during phase 1, so their
views conflict in phase 2, (b) A node p holds the view FSp, which contains only itself as a border
node, and node g has the larger view FSg, and awaits node p’s opinion on that view

its larger view FSg, expecting a response from node p. If neither node cared about each others’

views, they would wait for each other forever; this is avoided by the ranking relationship discussed

in section 5.2.1. During phase 2, a node is allowed to process messages in its buffer pertaining

to lower-ranked views, as well as messages pertaining to agreeing views. Because of this, g will

take p’s view message from its buffer, satisfying the ‘wait’ conditions of line 10 of figure 24, and

will reject the view because it is lower ranked, on line 13 of the same procedure.

Node p will receive this reject message, thus having a response from node g, and will be able

to proceed. It must eventually be notified that node c is failed, and will therefore complete all

of its rounds. When it does so, p’s opinion vector Vp will contain a reject tag from node g, and

no data at all from node c, so the condition ‘until Vp[] contains only accept’ on line 8 of figure

22 will be false, requiring p to loop to line 5, re-starting phase 1.

During this process, node g will have been waiting for p to either accept or reject its view,

and p must eventually produce the same view as g—when it does, g will be able to proceed to

the next ‘round’ of the AgreeOnView procedure, and complete phase 2.

Condition (b) presents a similar issue, but this time node p is the only genuinely live border

node in its proposed border set. Node g again awaits p’s opinion on its view, but this time p is

not circularly waiting for a response from g. In this case, p must again eventually detect that all

nodes in its proposed border set have failed, and will thus stop waiting for opinions from them

(again as in the wait condition on line 10 of figure 24). When this occurs, p will complete all of

its rounds, and again will discover that its opinion vector Vp does not contain only accept tags,
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Figure 31: Views constructed by nodes c1 (a) and c2 (b); either the nodes in BNd (c) or BNx

(d) must have failed before being able to provide opinions to c1 or c2, respectively

requiring that it return to phase 1 to re-build its view. Again, it must eventually converge with

node g’s view, at which point the protocol will proceed as normal and repair the failed nodes.

One other scenario can be created by phase 1, which is overlapping views—two views which

share some, but not all, failed nodes. This scenario is shown in figure 31. This is potentially

dangerous, because it appears as if nodes c1 and c2 in figure 31 could both repair node e. However,

even though the invocation of phase 2 with such views at two different nodes is possible, it is not

possible for both of c1 and c2 to enter phase 3 from this position.

Lemma A: More formally, it is impossible for an invocation of phase 2 by any two pairs of

nodes with two views (BS1, FS1) and (BS2, FS2) where FS2 ∩ BS1 6= ∅ and FS1 ∩ BS2 6= ∅

to both move to phase 3; one or both must return to phase 1.

This guarantee is created in part by the assumptions on the failure detector of no false

positives, and additionally by the fact that phase 3 cannot be entered without an opinion from

every node in the border set—failed nodes cannot give opinions, and either the border nodes

circled in BNd or BNx (or both) must have failed before having an opportunity to send an

opinion relating to the proposed views of c1 or c2, such that either c1’s completion of phase 2

will result in a return to phase 1, c2’s will do so, or both will return to phase 1, depending on the

order of events. The presence of the nodes in BNd and / or BNx in a border set must therefore

be due to failure detection latency.
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The reason for this is as follows; consider figure 31, and imagine that c1 creates its view

as in part (a), at which point nodes in BNd are alive. The nodes in BNd transmit phase 2

agreement to c1, permitting it to transition to phase 3 and make repairs. If this happened, node

c2 could not have completed its phase 1 view construction before the nodes in BNx had actually

failed, since c1 has already been told that they have failed (necessarily to get its agreement from

BNd). Because it will receive no relevant opinions from the failed nodes in BNx, node c2 cannot

therefore proceed to phase 3, and must return to phase 1. Other event orderings create similar

impossibilities, guaranteeing lemma A.

The protocol therefore handles all possible conditions created by failure detection latency

during phase 1, in terms of safety, so that a failed node cannot be involved in multiple repairs

(i.e. instances of phase 3). Of course, failure detection latency can impede the progress of the

protocol, potentially indefinitely. This is because, if a node in phase 1 is continuously informed

that a collection of nodes (e.g. those in BNx in figure 31) is alive, it will never get agreement from

them (simply waiting in phase 2). A perfect failure detector is required to eventually suspect

every failed process, but the duration of eventually is clearly an important factor in the capability

to make repairs—but is generally beyond the control of the repair protocol.

False positives (hypothetical) Continuing the discussion of the previous sub-section, false-

positives allow a scenario in which two different nodes can transition from phase 2 to phase 3 with

two views (BS1, FS1) and (BS2, FS2), such that FS2 ∩ BS1 6= ∅ and FS1 ∩ BS2 6= ∅—and

a node e appears in both FS1 and FS2.

For this reason, the assumption of no false positives is used. However, it is useful to inves-

tigate the boundary between what is, and is not, possible—i.e., what are the weakest possible

assumptions in which solving a problem is possible.

Failure detectors have long been classified into well-known types, originally by [15], where

‘perfect’, or P, is the strongest possible failure detector (impossible to implement in asynchronous

systems). Example other classes are:

• Strong (S); The failure detector eventually permanently suspects all crashed processes, and

a correct (non-crashed) process is never suspected.
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• Eventually perfect (♦P); The failure detector eventually permanently suspects all crashed

processes, and eventually no correct (non-crashed) process is suspected to be failed.

• Eventually strong (♦S); The failure detector eventually permanently suspects all crashed

processes, and a correct process is eventually not suspected to be failed.

This classification system has proven highly useful to the development and examination of

consensus algorithms for over a decade. The system was originally created, however, with a

fixed set of processes in mind, that were to agree on a value. In a scenario like phase 2, the

classification makes sense because it can be said, for example, that with a failure detector of

class S, each live border node does not wrongly suspect one other non-failed border node (i.e.

the same one continuously) for the duration of phase 2.

Unfortunately, applying this to the progressive discovery mechanism of phase 1 is difficult;

perhaps the most accurate interpretation is to say that, from a complete view discovered in phase

1, an S-class failure detector will not have suspected one non-failed node of having failed—i.e.

one single border node is known to be accurately reported as alive. The problem is that this

is actually an extremely weak assumption, even though the failure detector used is relatively

strong—essentially allowing only one node from the entire overlay to be known as not failed,

since the entire overlay is potentially within the purview of phase 1’s construction and discovery.

In the context of phase 1, a more useful way to classify a failure detector is by the distributed

correlation of false positives among border nodes entering phase 2 (i.e. do they have common

false positives in order to agree). This kind of correlation model is examined in section 7.1.2,

when the protocol’s resilience to false positives is evaluated.

One further comment on false positives in phase 1 is warranted, in that introducing the

possibility of false positives during view construction indirectly creates another possible deadlock

(i.e. prevention of progress) scenario. It was mentioned in section 5.2.1 that the existence of

false positives do not prevent the protocol from functioning, so it is important to discuss this

here. The problem arises when a node h proposes a view (BSt, FSt) in phase 2 in which it has

wrongly been informed that some of the nodes in FSt have failed. If some of the nodes in BSt

do not agree that their direct neighbours have failed, they will have no interest in the proposed

view, and so h will wait forever for their opinions.
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Figure 32: Phase 1 is executed by node g, and walks ‘through’ a failed border node of a repair
in progress by node p

The situation can rapidly worsen if another node has proposed a view in which all the nodes

it suspects have failed are accurately reported as such, and includes h in its border set. h will

never respond to this message if the proposed view is not lower ranked than the view h itself is

trying to propose, and so an entire system can rapidly become deadlocked, unable to make any

repairs due to awkwardly placed false positives.

The presented protocol can be augmented to counter this possibility, which is discussed in

appendix-A.

Repair in progress A node in phase 1 can walk failed nodes that are currently being repaired.

Such a scenario can occur as in figure 32. The failure encompassed by the border set BSp first

occurs, and those border nodes agree upon the nature of the failure, and select node p to enact

the repair. Before repair occurs, another failure develops ‘outside’ the border BSp, for which

node g enters phase 1. The border node c fails during this process, and node g adds both c and

all of FSp to its failed section view.

g must, however, reach the coordinator that is handling the repair of FSp, and add it to its

view as a border node. When the coordinator (p, in the above figure) completes its repair, it will

observe a phase 2 message from g, and will see that it contains nodes that p has just repaired.

It then uses the procedure RejectViewsContainingRepairedNodes, executed from line 15

of the RepairProtocol in figure 22 to reject this view. g will return to phase 1, and will use the

reject information from node p to update the backup of failed node c, taking account of whatever

repair action occurred. Should node p fail at some point during or after repair, before being able

to reject g’s view, g will eventually re-start phase 1 (because it will detect p as failed and stop

waiting for its opinion in phase 2), and either find node backups that reflect the recent repair,
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Figure 33: Nodes about to enter phase 1 in attempt to discover a failed section

or locate p’s repair log and again perform a latent repair.

Agreement in progress Similarly to the case of executing phase 1 during a repair in progress,

a failed border node during phase 2 can cause a node outside that border to walk the failed section

inside the border as part of its phase 1, creating a larger failed section view FSVu. If the in-

progress phase 2 results in agreement and a transition to phase 3, the phase 3 coordinator will

enact the repair and again reject the received view FSVu as it contains already repaired nodes.

If the in-progress phase 2 fails to agree, it will revert to phase 1, and will not discard the received

view FSVu, the recipients instead handling it in their next phase 2 as normal.

Backup location failures (hypothetical) Phase 1 uses the simplifying assumption that the

state of a failed node can be obtained by any non-failed node. This section examines what happens

if the backup service fails to perform to this assumption, and the minimum performance required

by the backup service for the protocol to be able to make repairs (i.e. make progress).

Consider the border set shown in figure 33.

If the above assumption is not used, clearly any one border node can simply fail to locate a

needed backup while discovering the failed section in phase 1—this failure can prevent it from

discovering the full extent of the failed section, and the full border set (in the worst case, a

node could fail to find the backup of a failed neighbour, thus being unable to make any phase 1

progress).

A border node that fails to complete phase 1 successfully will not normally provide any

meaningful phase 2 input, which prevents any other border nodes of the same failed section from

making any progress, as they will await the opinion of a node which will never provide one.

This is a relatively trivial problem to solve by having border nodes share backup data that
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they have acquired, so that all border nodes are able to participate in phase 2 as long as one

border node was able to locate all the necessary backups5.

A more complex ‘backup failure’ scenario is when each border node could only locate some of

the backups needed to navigate through a failed section in phase 1. If two such border nodes have

enough backups to find one another, but perhaps not enough to find other border nodes, they

can share the backups they were able to find, and hopefully both be able to then make further

progress to perhaps discover a third border node. Further progress may be possible following

communication with this additional node, and so on—while this is an interesting theoretical

graph problem, it is beyond the scope of this work.

Backup drift (hypothetical) Finally for phase 1, the out-of-date-ness (or ‘drift’) of acquired

backups is examined—what happens if a border node is able to acquire all necessary backups

when constructing a failed section view, but some of them are out of date?

This issue has two sides; drift which loses overlay updates, and drift which loses repair updates

(either border node updates for a repair action, or repair log data). These are now examined in

turn.

Loss of overlay updates

This is a problem which can, under different conditions, both impede the progress and com-

promise the safety of the protocol. Both conditions pertain to the structural data contained in

backups, which defines the failed section views constructed in phase 1. Progress can be impeded

if the backup of a node f contains links to ‘border nodes’ that do not consider f to be a neigh-

bour, and thus have no interest in the failure of f (such that they will provide no phase 2 input,

preventing the proposer of the view from leaving phase 2). This can happen if, for example, f

altered its position in the overlay’s topology, failing at some point afterwards, and this positional

change was not retrieved in its backup.

This is a complex problem, due to the distributed nature of the backup service and repair

protocol—different border nodes might have acquired backups of failed nodes that vary in their

recency, assuming multiple copies of a node’s backup are stored at different locations (as is usually

5This is actually one of two possible solutions; the other is for border nodes that were unable to locate enough
backups to generate a complete failed section view to ‘concede’ in phase 2—so, a node receiving a view message in
which the view contains nodes it locally believes have failed, but for which it could not itself develop a complete
view, can send an ‘ACCEPT’ message in response (along with a note of ‘no repair strategy’)
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the case for high resilience). If border nodes interested in the same failed section of overlay are

able to find paths to one another in phase 2, even if they find backups of nodes in their failed

sections with different timestamps, then these border nodes may be able to assist each other in

combining and sharing their most recent backups to form a more up-to-date view.

If no nodes have backups which point only to border nodes that are interested in this failure

(so all proposed border sets contain at least one ‘uninterested’ node due to backup drift), then

clearly this will impede the progress of the protocol indefinitely, or at least until more up to date

backups are located / provided.

In terms of safety, backup drift can conceptually permit a failed node to be involved in

multiple repairs, again due to topological data in backups being out of date. This is conceivable

if an overlay node f re-located to a different area of the overlay’s topology, and then failed. The

border nodes building a failed section view of the original region in which f was located may find

backups of the old neighbours of f which still note f as a neighbour. Concurrently, the border

nodes building a failed section in the most recent region of overlay in which f was located may

find backups of nodes from that region which list f as a neighbour, and therefore f is subject to

be part of two different repairs.

Loss of repair updates

The state written to repair logs simply must be available to phase 1 instances, in order to prevent

nodes from being repaired multiple times. As long as repair logs are available, the backups of

failed ex-border nodes do not necessarily need to reflect repairs that have been made, as ‘latent

repairs’ can be made by phase 1 nodes discovering backup state conflicting with information

found in repair logs.

Even so, the requirements above are clearly quite strong, and actually impossible to guarantee

without ‘stable storage’, which is nonexistent in many overlay deployments. Calculating the

probability of the above conditions occurring is a very complex problem on its own, involving

many factors, and is beyond the scope of this work.

This work has endeavoured to design a repair protocol which can theoretically guarantee

that every failed node in an overlay is repaired exactly once; this section has begun to show how

difficult this is in the context of an overlay network. As noted, this theoretical guarantee was
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targeted based on a desire to design a fully generic protocol, capable of performing any repair

strategy safely, most notably ‘additive’ repairs.

Having the capability to restore nodes is, as seen so far, very difficult. This is because it is

an additive, non-repeatable action; the integrity of the overlay would be at serious, undetectable

risk if a node was restored twice. Interestingly, subtractive repair strategies are repeatable—it is

guaranteed by the nature of the systems considered that a node cannot in actuality be removed

twice. Even if the recovery service attempts to do this, it cannot cause any damage, because

something removed cannot physically be removed again, and the attempt to do it can cause no

damage by trying.

Adapting the structure of an overlay to repair it is therefore much easier to support, and

requires less strong assumptions. A discussion of the relative merits of different repair strategies

in this context is deferred to the discussion of phase 3.

5.4.3 Phase 2

So far, scenarios that can arise due to phase 1 have been examined in detail. This section

examines phase 2 in the same way. It is assumed that phase 1 has generated valid views—i.e.

with up to date backups, and without false positives. The ramifications of not having such views

from phase 1 have already been discussed.

Normal case When things go well, with all nodes agreeing on the same failed section view,

phase 2 proceeds as already described, and must result in a transition to phase 3 for all border

nodes involved in the same phase 2 instance; all such nodes will select the same coordinator,

which will enact a repair in phase 3.

Border node failure Border node failures are expected to occur, and are handled by the

protocol. The way they are handled depends on the timing of the failure. There are essentially

two cases, classified with the notion of phase 2 survivors—border nodes that do not fail until

phase 2 is complete.

Using this concept, there are then border nodes which fail before any phase 2 survivors receive

any phase 2 messages from them, and those which fail after a phase 2 survivor receives a phase
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2 message from them. Due to the properties of the protocol, if any phase 2 survivor receives a

failed border node’s opinion, then all phase 2 survivors will receive that opinion.

A transition to phase 3 is possible only in the latter of the above two cases—if all border

nodes that fail do so after having sent a phase 2 agreement message to at least one phase 2

survivor. This ensures that all phase 2 survivors will receive opinions from all nodes in the given

border set, and assuming they are all ‘accept’, can proceed to select a repair coordinator.

A phase 2 opinion must be received from every border node participating in that instance of

phase 2 for the reasons given in the discussion of failure detection latency in phase 1—to allow

‘failed’ (i.e. ⊥) to constitute an ‘opinion’ would allow nodes that failed long before a phase 1

view construction to be treated as submissive to a view, and therefore allow a node to ignorantly

repair only a small part of a larger failed section that is concurrently being considered for repair

by others.

Therefore, if a node’s opinion vector contains any ⊥ entries, it must return to phase 1 to

re-try view construction.

Selecting a failed border node as coordinator If phase 2 is successful, so no border

nodes failed before a phase 2 survivor received their agreement, then it is still possible that a

repair will not be made from this agreement, because a failed border node may be selected as

coordinator. This may seem counter-intuitive, and it should be simple for border nodes using

the SelectCoordinator procedure to simply avoid border nodes marked as failed.

However, it is not possible to tell when a candidate coordinator failed, and therefore whether

or not it completed its repair action before it failed. If a border node therefore observed that the

ideal coordinator (based on repair strategy selection) had ‘failed’ according to the local failure

detector, and that border node unilaterally decided to pick the ‘next best’ coordinator from the

remaining live border nodes, which happened to be itself, then it can easily repair nodes that

have actually already been repaired by the ideal coordinator before it failed.

All border nodes must therefore choose the same coordinator, regardless of whether that

node is locally believed to have failed. If, after coordinator selection, a border node sees that this

coordinator has failed, it will revert to the beginning of the repair protocol, and re-enter phase

1, as it will still have failed neighbours.
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It will then eventually add the failed coordinator to its view, and locate its repair log (if

present). Based on the information in the repair log, it can then carry out the local effects that

the repair should have had if a repairOK message had been received from the coordinator. If no

repair log was present in the coordinator’s backup, then it failed before it was able to make its

suggested repair, and so the larger border set will attempt to agree and repair the larger failure,

now including the failed coordinator.

False positive (hypothetical) False positives have already been discussed in the context of

phase 1, and it is assumed for this section that phase 1 has developed a view which contains no

false positives. However, with a less-than-perfect failure detector, border nodes can be incorrectly

reported as failed during phase 2.

As with the consensus algorithm on which this phase is based, it is tolerant of false-positive

reports of all but one member of the border set (a member that must never be falsely reported

to any border set member). This is not explored any further here, and the interested reader is

referred to [15] for a discussion of the original theory relating to this.

5.4.4 Phase 3

Finally, the conditions that can occur during phase 3 are examined, most of which relate to the

failure of the repair coordinator at various points during this phase. It is shown that these con-

ditions cannot result in a violation of the protocol’s correctness criteria, and cannot indefinitely

impede its progress.

Coordinator failure before PrepareRepair This causes no impact other than to slow down

the speed of repair. Other border nodes in this border set will eventually detect the failure of

the coordinator, re-enter phase 1, locate the coordinator’s backup and find that no repair took

place, then enter into phase 2 to attempt to agree on and repair a now larger failed section view.

Coordinator failure during PrepareRepair The behaviour of the PrepareRepair pro-

cedure for a repair strategy must be such that it performs no operations affecting the live overlay

network; this is true of the repair strategies described in section 5.3. Failure during this procedure

is therefore equivalent to the above.
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Coordinator failure before AddRepairToRepairLog This is equivalent to the above.

Coordinator failure before EnactRepair At this point, the intended repair has been logged

in the coordinator’s backup, which means the intended effects of the repair will take place even-

tually. The surviving border nodes in this border set will eventually detect the coordinator’s

failure, enter phase 1 as they must still have a failed neighbour, and construct a failed section

view up to the coordinator.

They will find a logged repair in the coordinator’s backup, which contains information that

the other nodes in the failed section view have already been subject to a repair (whether the

repair actually completed or not). The border nodes will then observe that they are not consistent

with the repair log, and carry out the locally appropriate actions of the repair, as detailed by

the repair strategy for non-coordinators (again, see section 5.3 for examples).

This will remove the failed neighbour originally causing this failed section view, possibly

replacing it with another failed node, depending on the actions of the repair strategy—if so,

phase 1 is re-initiated for this new failed neighbour.

Coordinator failure during EnactRepair Partial completion of a repair strategy ulti-

mately equates to the same situation as the above case, though partial execution of the repair

strategy (e.g. with some nodes restored) may leave less to repair in the follow-up iteration of

the repair protocol. This works as shown in figure 34; a repair coordinator, p, begins enacting

an additive repair strategy, and is able to restore nodes k and w before p itself fails. The other

border nodes q, r, g and s revert to phase 1, re-constructing the original failed section in (a),

but now find node p’s repair log, and enact the effects of that repair locally; node s for example

swaps its link to failed node w with one to the restored node w, no longer having any failed

neighbours. The nodes that p did not restore before it failed become the subject of a future,

smaller failed section agreement attempt, and the failed node p itself becomes part of a separate

failed section (c).

Coordinator failure before send repairOK With the repair strategy executed in full, the

repairOK message is used to inform border nodes that repair has completed, and that they may

enact any elements of the repair local to their node. As discussed in section 5.4.3, if no repairOK
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Figure 34: The coordinator of a repair (a), fails mid-way through its repair, having restored
failed nodes k and w (b). The nodes it was not able to repair become part of a future agreement
attempt and repair (c).

messages are sent, the border nodes will eventually detect the failure of the coordinator, include

it in a future failed section view, and discover its repair log in phase 1. They will then enact

the repair effects on their local node in the same way as if they had received repairOK from the

coordinator.

Coordinator failure during send repairOK A repairOK message is sent to every border node,

an action which is not atomic, such that some border nodes may be sent a repairOK message,

and some may not. Those that do receive it will have enacted any local elements of the repair,

as normal, and those that do not receive it will detect the failure of the coordinator and proceed

as in the previous case.

Coordinator failure before RejectViewsContainingRepairedNodes The purpose of

this procedure is to examine the local node’s message buffer for any view messages containing

nodes that the coordinator has just repaired. From the point of view of the sender of this view,

this coordinator is a member of its border set, and it is awaiting an opinion on its view in round

1 of phase 2.

This procedure therefore supplies a reject message to any such border nodes, as it has just

repaired some or all of the nodes contained in the proposed failed section. This allows those

waiting nodes to proceed past round 1 of their phase 2 instances, and because a reject was sent
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from this coordinator, they will communicate with that node no further. If, instead of sending

reject messages to these nodes, the coordinator fails before being able to do so, the nodes waiting

for an opinion will eventually detect the failure, and will stop waiting for an opinion from this

node.

Either way, therefore, these waiting border nodes will not be able to proceed to phase 3, and

when they revert to phase 1 they will eventually locate backups which reflect the repair action

(or they will detect the repair log of this node, which equates to the same thing).

Coordinator failure during RejectViewsContainingRepairedNodes This scenario is

ultimately equivalent to that above, except that some waiting nodes will receive a reject message

from the coordinator, and some will see it fail without providing an opinion.

Border node failure A border node that fails just before or during the repair process in phase

3 will eventually have its stored backup updated to reflect the changes made by the repair (i.e.

the topology and state modifications that would have been made to that border node had it lived

to see the repair).

This is guaranteed to happen as long as the repair coordinator logs its repair, and this repair

log is located in the coordinator’s backup should it fail.

Stable storage and subtractive repairs It has already been demonstrated that stable stor-

age is necessary to ensure that every failed node is involved in exactly one repair. This, in

turn, is necessary in particular when dealing with additive repairs, where failed nodes are being

restored—performing such an action twice is potentially corruptive.

However, if it is for the moment assumed that only subtractive repairs are ever made, the

assumption of stable storage can be weakened. The assumption is essentially used so that repair

logs are guaranteed to be found, and thus already-restored nodes are not forgotten about. Since

a failed node cannot be removed from the overlay twice, the issue becomes a simpler one of

consistency.

Assume that repair logs are always lost. If a subtractive repair is partially completed due to

coordinator failure as in figure 35 (b), such that some of the border nodes g and s have their

topology / state updated, but some do not, this creates a problem in the follow-up phase 1 and
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Figure 35: Different nodes observe different, contradictory structures of the overlay due to lost
repair logs following the failure of coordinator node p mid-repair

2 instantiations, as nodes g and s may have views proposed to them which refer to failed nodes

that according to their neighbour lists do not have any relationship to them—i.e. they are not

interested in the failure of these nodes. In figure 35, nodes g and s have their links to nodes in

the failed section FS replaced with links to node p (part (b)). Node k, which has not locally

seen any effects of this repair, then proposes the original view FS to nodes g and s (part (c)),

but these nodes no longer consider themselves as neighbours of the proposed view.

This scenario has occurred because the nodes g and s have an inconsistent view of the

overlay network—their view is actually more up-to-date, but they do not know why or how.

Now, consider altering the assumption; instead of repair logs always being lost, repair logs are

only lost if all effects that they imply are also lost.

This is difficult to uphold for additive repairs, since the effects of an additive repair are

actually newly instantiated nodes in the system, as well as local changes at border nodes, and

these new nodes will not simply disappear if all repair logs referencing them are lost. However,

for subtractive repairs it is simpler; when a border node receives a repairOK message, it logs

the repair immediately. It then performs its ‘side’ of the repair, and logs the local effects of the

repair (i.e. topology / state changes). Coupled with the new assumption that the backup service

cannot return a node backup that contains the effects of the repair at this node, and does not

contain the repair log (a reasonable assumption, given the logged-after status), this guarantees
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that either a border node (or its backup) contains both the effects of the repair and the repair

log (allowing latent phase 1 repairs on any other border nodes not containing the effects of the

repair), or a border node backup contains only the repair log, or neither.

Looking at the full picture, this means that if no repair log is found from any border node,

then no effects of the repair actually exist anymore, and so it is safe to perform any repair in

this region again. This is, however, only valid if only subtractive repairs are permitted for the

lifetime of the system.

Summary As has been shown in the previous sections, repair logs are essential to the correct-

ness of the protocol in ensuring nodes are not repaired twice, and furthermore, repair logs must

be found along with a node’s backup, and these logs must be up-to-date with all repairs carried

out by that node.

In systems as dynamic as many overlay network deployments, this simply cannot be guaranteed—

it necessitates ‘stable storage’ for repair logs. However, as mentioned, the guarantee of repairing

every node exactly once is necessary only for additive repair strategies in which nodes are re-

stored. In subtractive repair strategies, the guarantee can be lessened to repairs of a failed node

occurring at least once, which permits some important changes to the assumptions and details

of the protocol, allowing it to operate in much more hostile—and realistic—environments.

It is important to know the limits of possibility, and this section has endeavoured to find

those limits, demonstrating a theoretically correct, fully general repair protocol, which can safely

perform any kind of repair, and showing the necessary conditions for such a protocol to operate

correctly. The possible reductions in these necessary conditions have been shown when reducing

the generality of the repair protocol to making subtractive repairs only—still general to many

overlays, but not fully general in terms of possible repair strategies.

Even so, making coordinated subtractive repairs safely has shown limits of what is possible

in terms of the necessary failure detectors and backup guarantees. Further reductions in the

assumptions on these two important support services necessarily reduces the correctness of the

protocol from deterministic to probabilistic. This is revisited in section 7.1.
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5.5 Concluding remarks

Distributed systems today are moving ever more towards the entities in those systems having

complex inter-relationships, exemplified by the peer-to-peer model, perhaps the ultimate demon-

stration of role multiplicity, where services are used by a peer, and services of a similar kind are

provided by that same peer to other peers.

These complex inter-relationships of suppliers and providers woven throughout a distributed

system work through collaboration between many entities to provide a needed service. This

chapter has presented a repair protocol which also operates in an explicitly collaborative way.

This collaboration ultimately allows the repair protocol to be fully generic in the kinds of

repairs that it can support, from subtractive adaptation of the overlay to additive augmentation.

The cost of providing this support has been demonstrated, and the boundaries of possibility ex-

plored. This in turn fulfils requirements 1–4 (scalability, genericity to overlays, ability to harness

the strengths of a deployment environment, and genericity to those deployment environments)

for the recovery service in particular. An earlier version of this work was published in [63], along

with a supporting technical report [64].
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Figure 36: The implementation architecture of SONAR, showing relationships between services

6 Implementation

This chapter discusses the implementation details of SONAR, beginning with the overall archi-

tecture, and then detailing the individual sub-services. SONAR was implemented as a module

within the Gridkit middleware, and was designed as a collection of easily replaceable compo-

nents, following the philosophy of OpenCOM (Gridkit’s underlying component model). The

implementation is entirely in Java.

6.1 Architecture

The architecture of SONAR as seen by overlays has already been discussed in chapter 4. How-

ever, the internal architecture of SONAR’s implementation is slightly more complex than this

external view, with a high degree of modularity and configuration options. An overview is given

in figure 36.

The central component is the DependabilityService. This is the overlay’s primary point of ac-

cess to the functionality of SONAR, serving as the entry-point for topology change notifications

and SONAR message delivery. It is also responsible for loading and configuring sub-services.

All standard features of the API are handled here, such as registerNode() and neighbourAdded(),

and these are propagated to sub-services as appropriate.

All sub-services have a standard interface, and may also implement extended interfaces to

describe specific capabilities. The standard interface is ISubService, which is very similar to
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the main SONAR API, with the methods registerNode(), unRegisterNode(), deliverMessage(),

neighbourAdded/Removed() and getServiceName().

When the DependabilityService component is then informed through the main API that its

local overlay node has added a neighbour, for example, this event is then forwarded to the

currently loaded sub-services using their standard ISubService interface. This allows each sub-

service to handle these events as they wish.

SONAR message transport is also achieved through the central DependabilityService com-

ponent; when a sub-service wants to send a message, it requests that the DependabilityService

do this, providing it with the message to send and the accessinfo representing the destination.

The DependabilityService component passes this request on to the local overlay node, using the

overlay-side API call sendToService(...). When this message arrives at the destination overlay

node, that node delivers it to the local DependabilityService component, which in turn delivers

the message to the destination sub-service.

Each sub-service therefore has a reference to this central component, and uses it to send

messages and acquire references to other sub-services as required. The recovery service needs

access to a failure detector, for example, and so can request a reference to a component matching

a given interface type from the DependabilityService.

6.2 Failure detection service

The failure detection service has an extended interface with the methods setListenerOf(), un-

SetListenerOf(), hasNodeFailed() and isNodeFailed(). The former two control ‘registrations’ of

nodes of interest, such that the registering entity will be informed of changes in the failure status

of registered nodes. hasNodeFailed() performs an immediate ‘active’ check to see if the given

node is believed to be failed (e.g. by sending probes and waiting for a response or timeout),

while isNodeFailed() checks if a registered node of interest is currently believed to be failed (so

this call invokes no additional network activity).

Users of the failure detection service implement the interface IFailureDetectionListener, with

the two methods nodeSuspected(nodeID) and nodeNotSuspected(nodeID); these are called when

the status of registered nodes of interest changes.
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The implementation of the failure detector is a very simple one, and sends probes to all

registered nodes of interest. If they do not respond within a certain amount of time, they are

marked as failed. If at any point in the future they do respond, they are marked as alive once

more, and the registered entities informed of the change.

6.3 Backup service

The backup service has two extended interfaces, IPushBackupService and IBackupService. The

former is used by the overlay to advertise changes in nodestate, and the latter is used to acquire

backups (e.g. by the recovery service during repairs). The backup service is notified about

changes in topology through the general ISubService interface, so that it can distribute backups

of the local node appropriately.

The implementation is again simple; a service instance periodically ‘floods’ a backup of the

nodes on its host to all of its immediate overlay neighbours. Those neighbours re-forward the

backup to their neighbours (other than the sender), and so on, for a given number of hops. Each

successive backup is given a higher ‘timestamp’, so older backups are overwritten with newer

ones. The implementation of both this, and the failure detection service, could be improved, but

were not the focus of this work, and their described implementations are sufficient for general

use.

6.4 Recovery service

The recovery service has no specialised interface, as it cannot be asked to do anything (other

than its implicit tasking by being loaded in the first place). However, it does implement the

IFailureDetectionListener interface, so that it can be notified of the suspected failure of nodes it

is interested in (and obviously implements the ISubService interface, as all sub-services must).

When loaded, the recovery service acquires references to a backup and failure detection service

instance, and registers with the failure detection service all of the overlay node’s advertised

neighbours, so that the recovery service will be informed if they are believed to have failed.

The service then becomes passive until a failure is reported. Meanwhile, the failure detection

service probes registered nodes, and the backup service creates backups of the local nodes and
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distributes these for safe keeping as described above.

On the report of a failure, the recovery service enters phase 1 of the protocol described in

chapter 5; it uses the getBackupOf() method of the IBackupService interface to get the stored

backups of each node detected as failed, examines the neighbours of these failed nodes as detailed

in their backups, and uses the hasNodeFailed() method of the IFailureDetectionService interface

to actively probe the status of these neighbours.

Once this discovery phase is complete, the recovery service registers all the border nodes with

the failure detection service, using setListenerOf(), so that it is told if a border node is failed

(and thus will stop waiting to receive an opinion from that border node).

Phase 2 then executes, and if successful phase 3 is entered; the coordinator logs and enacts

the chosen repair, and the other border nodes again use setListenerOf() to receive notification

of the failure of the coordinator. The coordinator uses an additional, internal interface on the

backup service to attach repair logs to its node’s backup.

6.5 Summary

This chapter has described the major implementation details of SONAR, which can be down-

loaded from [1] along with the rest of Gridkit. It has shown the modularity internal to SONAR,

which promotes modifications to or switching of the implementations of each sub-service without

needing to change other sub-services.
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7 Evaluation

This chapter begins by first evaluating in isolation the repair protocol approach described in

chapter 5, to provide an understanding of its behaviour. Following this, SONAR as a whole,

including the repair protocol, is empirically evaluated in comparison with the proprietary re-

pair approaches found in a representative group of overlay networks. Finally, the genericity of

SONAR is examined, considering its applicability to current overlays, and looking ahead to

possible future overlay designs.

Throughout this chapter, the optimised version of the repair protocol is used (such that a

border node will not send to another border node an opinion it knows has already been received).

All simulation described here is performed with a simulator developed in parallel with this work,

which is particularly adept at expressing and evaluating peer-to-peer systems in detail, using a

specially designed language and virtual machine [3].

7.1 Repair protocol evaluation

This section examines in more detail the behaviour of the repair protocol described in chapter 5.

Its behaviour is examined abstractly, without reference to any particular overlay, to demonstrate

its general properties. The behaviour of the protocol in ‘normal’ conditions is first explored—i.e.

scenarios when its assumptions hold. This shows the normal costs involved in using the protocol.

Following this, the protocol is examined under the stresses of a more practical deployment,

with experimentation and analysis of two key complicating factors—cascading failures, in which

border nodes fail during an agreement attempt, and false positives reported by the failure detec-

tor.

This last scenario necessarily makes the protocol’s correctness probabilistic rather than deter-

ministic, and so this section investigates the probabilities of the protocol performing correctly

under these conditions.

7.1.1 Evaluation under normal conditions

The four major factors in the per-repair overhead of the repair protocol are: (i) the number of

failure detection probes incurred; (ii) the number of backup accesses incurred when constructing
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Figure 37: Per-border-node overhead during repair
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Figure 38: Combined overhead at border nodes during repair

failed section views (phase 1); (iii) the number of messages incurred to agree on a failed section

and a repair coordinator (phase 2); and (iv) the number of messages sent to actually enact a

repair (phase 3).

To evaluate these four elements, the repair protocol was simulated on an overlay network

using scenarios with increasing border set sizes and failed section sizes. None of these scenarios

involved cascading failures (i.e. there were no additional failures once the protocol began) and

all of them assume no false positives in failure detection. As mentioned, the effects of these

complicating factors are discussed in section 7.1.2.

The results in figure 37 show measurements of the first three of the above-mentioned factors

as seen by each individual border node (in parts (a), (b) and (c) of the figure, respectively).

The aggregated effect on the whole border set is shown in parts (a), (b) and (c) of figure 38.

In all of these graphs, the x-axes represent either the size of the border set or the size of the

failed section, depending on which of these factors is most relevant in the particular case; and

105



the y-axes represent the number of messages incurred.

The graphs show that the number of failure detection probes and agreement messages per

border node grow linearly with border set size, and that the growth in backup accesses is linear

with failed section size. In terms of the combined overhead incurred by an entire border set, the

graphs in figure 38 show that the number of failure detection probes and agreement messages

grows polynomially with border set size, and that the growth in backup accesses is linear with

both failed section and border set size.

The protocol therefore scales quite nicely in terms of the load on each border node. Analyti-

cally, these first three factors can be expressed per-border-node as follows:

i. The number of failure detector ‘uses’ incurred by a border node is (b + (f − 2)), where b is

the size of the border set and f is the number of nodes in the failed section. The reason for

the ‘-2’ is that the initial notification of a neighbour failure is not counted as a use of the

failure detector during the protocol’s execution, and a node does not need to check itself

for failure during failed section view construction.

ii. The number of backup requests that occur is simply equal to f , i.e. the number of nodes

in the failed section.

iii. The number of view agreement messages sent is (b− 1)× 2 (for non-coordinator nodes; the

repair coordinator must additionally send repairOK messages to the border set on repair

completion, and so incurs an additional b− 1 messages). This is because, in the best case,

there are 2 rounds, and each border node needs to send a message to every other border

node (i.e. excluding itself) in each round. This equation does not apply to the special case

of 2 border nodes, for which only 1 message is needed for non-coordinator nodes, and 2 for

the coordinator.

Looking at the fourth factor of cost, i.e. repair enactment, the number of messages involved

here is dependent on the repair strategy used. For example, subtractive repairs incur no extra

messages as non-coordinator nodes simply replace failed links with a link to the coordinator, and

vice versa. Additive repairs typically incur one extra message per restored node to instantiate

and add state to that node, in addition to the cost of resource discovery to locate suitable hosts
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(not considered here). Generally, these costs are minor in terms of message overhead compared

to those incurred in phases 1 and 2.

Overall, as the combined cost is a polynomial function of the size of the border set, the over-

head only becomes an issue with ‘large’ failed sections and highly-connected overlays. Moreover,

this overhead is completely independent of the size of the overlay itself.

7.1.2 Evaluation of key complicating factors

This section provides an analysis of the important ‘complicating factors’ of (i) cascading failures

and (ii) false positives reported by the failure detector.

Cascading failures The repair protocol accommodates the failure of border nodes at any

time, but assumes that ongoing failures will stop for long enough for the protocol to be able to

complete. The implications of this are now examined.

As there are many different points at which border nodes can fail, this is a complex issue to

analyse. The most useful analysis is of the worst possible case, and this is examined here. The

worst case occurs when a border node fails at the very start of the protocol without providing an

opinion, and a full series of rounds must be executed to no effect (the round-reducing optimisation

being unusable here as there is missing data from the failed border node).

In such cases, the number of additional messages sent by each border node can be found using

equation 1, in which failedBNodes is the number of failed border nodes in the border set, and

b is the size of the border set (including the failed members).

(b− 1)︸ ︷︷ ︸
round 1

+


 (b− 2)︸ ︷︷ ︸

remaining rounds

× ((b− 1)− failedBNodes)︸ ︷︷ ︸
surviving nodes


 (1)

In equation 1 the first term (b − 1) represents the round 1 messages sent by each surviving

border node to all other border nodes (including failed ones, which it is assumed have not yet been

reported failed). The second term, (b− 2)× ((b− 1)− failedBNodes), represents the messages

sent by each surviving border node to complete all remaining rounds, with each surviving node

sending messages to all other surviving nodes in each remaining round. All failed border nodes

that do not provide an opinion are necessarily detected as failed in round 1 by all surviving

107



border nodes, because border nodes must wait in a round to receive a message from every other

border node, unless that node is reported failed. Using equation 1, the overhead of handling

border node failures is less with more failed border nodes within a single border set, but more—

and cumulative—when successive agreement attempts abort due to having failed nodes in their

border sets.

As an example, assuming a border set of size 4 with one failed border node, each surviving

border node would incur a cost of 7 messages to abort the agreement attempt and be able to

return to phase 1; (4− 1) + ((4− 2)× (4− 1− 1)).

Further agreement messages would then be required as normal in the follow-up phase 2 to

actually make the repair. From the previous sub-section, it can be seen that a normal-case

agreement between 4 border nodes would cost 6 messages per border-node (and an additional 3

for the coordinator).

The worst case ongoing failure scenario may therefore result in a message count almost double

the normal case (as an abort is needed plus the follow-up agreement). Given the strong properties

of the protocol, however, and the specific conditions under which these higher costs are incurred,

this overhead is reasonable.

Failure detection inaccuracy As with any repair approach, the repair protocol is adversely

affected by false positives, where a failure detector wrongly declares a node as having failed.

There are two major cases to consider here.

Case 1 involves a node p being told incorrectly that one or more of its neighbours has failed,

going on to construct a view of the supposed failed section, and proposing this view to its

supposed border set. There are two possible sub-cases here. The first, and most likely, is that

the other supposed border nodes simply disagree with p’s view (because at least some of their

failure detectors did not report a false positive). Here, the agreement attempt will fail, and the

only adverse effect will be p’s wasted effort, involving phase 1 and on the order of (b − 1) × 2

phase 2 agreement messages (‘propose’ from p and ‘reject’ from the other b − 1 border nodes).

The second sub-case occurs when the failure detectors of every node in the supposed border set

are all uniformly incorrect such that they all agree with p. Here, the protocol will erroneously

proceed to repair non-failed nodes.
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Figure 39: Effects of false positives

However, such errors can be straightforwardly countered by sending a signal to nodes in a

failed section prior to phase 3. Nodes wrongly assumed to have failed which receive this signal

are expected to respond either by terminating or by rejoining the overlay using some overlay-

specific mechanism. Thus, although some wasted effort has been incurred, there is no threat to

the integrity of the overlay from faulty failure detection.

Case 2 is more problematic. This happens when false positives occur in the following context:

(i) multiple concurrent executions of the repair protocol are in operation and therefore multiple

border sets are concurrently being formed; and (ii) within each of these concurrent executions

all members of the respective border sets agree on their failed section views; and (iii) more than

one of these border sets includes one or more of the same nodes in its failed section view. This

unfortunate combination of circumstances can lead to multiple repair coordinators operating on

the links of supposed failed nodes without knowledge of each others activities. This, in turn, can

lead to race conditions which can potentially damage the integrity of the overlay.

Developing a completely general analysis of the probabilities of the above two cases occurring

is a challenging problem, as it depends both on the topology of the overlay (of which there are

many possibilities, as discussed in chapter 2) and on the specific placement of false-positives

within that topology. This thesis does not attempt to fully model this problem for every possible

topology, instead simplifying it slightly to provide a general outline of the effects.
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To achieve this, simulations were performed in simple fully-connected mesh overlays of in-

creasing node population. Each node in these topologies was then informed that a percentage

of its neighbours had failed, when in fact they had not. For each mesh size, for each percentage

of false positives used, the nodes reported as failed to each node were changed, such that every

possible ‘pattern’ was tried for that percentage level, to then obtain an overall probability of

erroneous repair due to false positives.

The results of this are shown in figure 39. Figure 39 (a) pertains to the first case (sub-case 2,

in which repairs go ahead), with the x-axis showing increasing percentages of false positives per

node, and the y-axis the probability of repairing non-failed nodes at those percentages. Curves

are given for three different mesh sizes. Figure 39 (b) pertains to the second case, giving the

minimum false positive percentage at which any possibility of concurrently repairing nodes was

observed, and the corresponding probability of this happening.

In both cases, the highest percentages of false-positives used essentially mean that each node

wrongly believes every other node except one (and itself) to be failed. The 100% false-positives

cases are not shown, as these obviously mean all nodes will repair each other with probability 1.

The graphs show that a high percentage of false-positives is needed under this model (over 50%

at every node) for any significant probability of erroneously repairing non-failed nodes in case 1.

Further, an even higher percentage of false-positives at every node (75% and above) is needed

in order to have any possibility of multiple coordinators concurrently enacting repairs involving

the same node(s)—and even then this probability is very low.

This demonstrates the power of the consensus approach used in the repair protocol, which

forces the independent failure detectors of border nodes to agree with one another on failure

status, and while a perfect failure detector is required for its theoretical correctness, it takes

significant errors from the failure detector to cause problems.

7.2 Comparative evaluation

SONAR is now evaluated as a whole, including the repair protocol—as stated in chapter 4, the

genericity of a service must not be cost-prohibitive in terms of its overhead and performance

compared with specific solutions. However, genericity does come at a price, and this section eval-
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uates the viability of using SONAR instead of a custom-built dependability solution, examining

the Chord [76], TBCP [58] and Gnutella super-peer [83] overlays.

The majority of this evaluation is performed using simulation, but it is believed that the

factors being considered here—in particular the performance differentials—are applicable equally

to real deployments. TBCP is additionally evaluated in a deployment on PlanetLab [2] to give

an idea of the real performance on SONAR.

Throughout this section the following evaluation criteria are used:

• The speed with which repairs are completed

• The performance overhead of the fault-tolerance approach (both in failure-free conditions

and during repairs)

• The disruption due to failures of the overlay’s service provision

• The performance of the overlay after failures

For the above factors, SONAR’s performance is evaluated when it is permitted to use subtractive

repairs only, to mirror the kind of repairs made by the custom-built dependability solutions of the

respective overlays. In each case, however, the use and effects of additive repairs are additionally

considered for SONAR.

In all simulation graphs, time is expressed as ‘virtual time’, an abstraction used by the

simulator to accurately model a distributed (i.e. inherently parallel) system with very high

resolution. A single unit of virtual time elapses for a simulated node when it has executed a

single (high-level) instruction.

7.2.1 Chord

Two versions of Chord were created for simulation; one uses Chord’s proprietary repair mecha-

nism as in [76], and the other uses SONAR for its repair. Both versions used identical failure

detection techniques, and identical amounts of redundancy. Network sizes of 300 nodes were

used, and over the course of an experiment 50% of the nodes were gradually failed by selecting

several random nodes to fail at regular intervals.
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Figure 40: Standard Chord (left) and SONAR-Chord (right) network usage at node 8

Repair speed On average, a repair in the SONAR-enabled version took 1.1 times that of the

version using the proprietary repair technique.

This is reasonable, given the amount of repair options offered by the protocol, and the guar-

antees provided—to relate this to real-time, Chord’s proprietary repair mechanism takes on the

order of milliseconds to complete, and consists simply of a node switching its successor from a

failed node to the next live node on its successor list.

Performance overhead Per-node performance can be usefully measured here in terms of

CPU load, memory usage and network usage. The impact on CPU load of running SONAR

alongside overlay nodes is negligible, and is not considered further.

Figure 40 shows the overall fault-tolerance related network usage (in terms of the volume of

data sent) of the two versions of Chord (both at node 8, a ‘survivor’) throughout the experi-

ment. Standard Chord uses slightly more network resources during failure-free periods, due to

its continuous successor list maintenance (whereas the SONAR backup service ‘backs off’ as

the network stabilises); the SONAR version does however show a number of ‘spikes’ in network

usage; these are due to larger failure groups occurring, requiring more messages to repair.

Figure 41 shows the overall average memory usage of the two Chord versions throughout

the experiment. They show the period before any failures occur, up to time 4800, showing the

higher memory load of SONAR, and the period during failures when the memory usage of both

versions increases steadily; this is due to there being less nodes in the Chord rings at which to

store the same amount of DHT data.

The additional memory costs seen in SONAR are due to genericity—ultimately, more data
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Figure 41: Standard Chord (left) and SONAR-Chord (right) average memory usage

must be stored to achieve the same resilience level. In the two failure free periods, this overhead

is roughly 4 times that of standard Chord. These costs include necessary meta-data enclosed

with backups, in addition to repair logs from the recovery service.

There are two main conclusions that can be drawn from these results. Firstly, in the failure-

free period at the start of the experiments (up to the marked points) the ‘ambient’ messaging

overhead of using SONAR can be observed—slightly lower than standard Chord, due to the

removal of successor list maintenance.

Secondly, during some failures, SONAR uses more network resources, above that during

failure-free periods, while standard Chord uses roughly the same amount. This is because the

SONAR repair protocol described in section 5 is pro-active in discovering the failed section (i.e.

sending failure detection probes), and requires agreement messages to be sent to reach consensus

on the failure extent and repair strategy. By contrast, standard Chord nodes simply make a local

update to their successor link as they detect that it is failed (replacing it with the next node

from their successor list).

Disruption due to failures Repair speed has been examined in isolation, but not the dis-

ruption that is caused to overlay service while failures (and their repairs) are ongoing. This is

tested by attempting to acquire keys from the Chord ring while failures are present in the overlay.

Obviously, with a longer repair time, it can be expected that SONAR-Chord will experience

higher temporary performance degradation due to failures.

In fact, standard Chord failed to acquire 27% of keys in these circumstances, and SONAR-

Chord failed to acquire 47%. Following the conclusion of all repairs, both versions had 100%
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Figure 42: Standard Chord (left) and SONAR-Chord (right) average workload

success at acquiring keys (indicating that no data was lost, and no failures were unable to be

repaired).

Overlay performance Figure 42 shows the average per-node ‘workload’—i.e. number of

requests being handled by each node—for the two versions of Chord. As with the memory load

graphs, a node’s workload increases steadily over the course of the experiment, as there are less

nodes servicing the same number of requests. The sharp drop at the end of the experiment is

caused by the end of stress testing, and a much less intense final ‘full-scan’ to ensure all starting

DHT resources are present in the network following the completion of all repairs. The slight

difference in the profiles of the two graphs is caused mainly by the occasional spike in SONAR

as a failure, and slightly slower repair, causes a build-up of requests at the point in the ring

‘before’ that failure.

Using additive repairs In all of the previous, SONAR used subtractive repairs to recover

the overlay after a failure—i.e., mirroring the strategy used by the overlay’s proprietary fault-

tolerance mechanism. However, with a simple configuration option, SONAR can be permitted

to use additive repairs where possible. The rest of SONAR remains identical to the above, but

when a failure occurs, nodes will consider repairs that restore those failed nodes on alternative

sufficiently resourced hosts from outside the overlay.

Of course, this assumes the existence of such hosts, but this is not an unusual scenario in a

Grid-like deployment. Using additive repairs, such that 50 ‘spare’ suitable hosts are assumed to

exist, figure 43 shows the resulting average workload over time.

This clearly achieves a generally lower workload over time than the version using only sub-
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Figure 43: Chord-SONAR average workload with additive repairs

tractive repairs, as can be expected—there are more hosts remaining in the overlay by the end

of the experiment. This demonstrates the power of adaptation to the deployment environment

that can be leveraged from a strong recovery protocol. Moreover, this adaptivity is generic to a

wide range of overlays, which can straight-forwardly harness the same benefits.

Summary While the cost of using SONAR is generally higher than the proprietary fault-

tolerance of Chord, this is most evident with the memory overhead of a relatively basic backup

service implementation. General messaging overhead is slightly less that standard Chord, and

repair overhead is more, taking slightly more time and using briefly more resources. However, all

of these costs are reasonable for a generic service, especially given the adaptivity and modularity

it possesses; even the most significant impact—disruption due to failures—is just 20 percent

higher with SONAR.

7.2.2 TBCP

Again, for TBCP, two versions were created, one with custom-built fault-tolerance mechanisms,

and the other supported by SONAR. In this case network sizes of 1000 nodes were used, and

again 50% of the nodes were failed over time by selecting several random nodes to fail at regular

intervals. The approach adopted for TBCP’s proprietary fault-tolerance mechanism is a system

in which each node remembers its grand-parent, and the tree root node, so that a node with

a failed parent simply re-initiates the standard ‘join’ procedure either at its grand-parent, or if

that node is also failed, at the tree root. Any children of such displaced nodes remain with them

in this process. This approach is fairly simple to implement, and maintains a good tree ‘shape’
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Figure 44: Standard TBCP (left) and SONAR-supported TBCP (right) repair times distribu-
tion.

(i.e. in terms of balance) [84].

SONAR-supported TBCP was also evaluated on PlanetLab [2], to examine the behaviour of

SONAR in a more realistic setting—this is a time-consuming process, and so was only performed

for SONAR-supported TBCP. The PlanetLab deployment was of 150 hosts, with similar config-

uration parameters to the simulated version, apart from the failure amounts, which in PlanetLab

were at 80% of the overlay (giving more data to analyse from these smaller experiments). This

PlanetLab deployment is also used here as a basis to assess how frequently the ‘complicating

factors’ of the repair protocol occur in a real environment.

Repair speed In simulation, the average repair time of standard TBCP was 1.8 times slower

than that of the version supported by SONAR.

This is explained by the re-join-at-grand-parent/root strategy employed for the proprietary

TBCP repair mechanism. As mentioned above, this maintains a very good tree shape, but can

take a significant time to ‘stabilise’ as displaced nodes find new positions in the tree, particularly

for failures close to the root.

To put this in context, figure 44 shows the spread of repair times in the two simulated

versions—the fastest repairs were 1,868 simulation time units for standard TBCP, and 21,444

for SONAR-supported TBCP; and their slowest repairs were 615,144 and 70,533 respectively.

Standard TBCP therefore performs faster in ‘easy’ cases where nodes fail close to the leaves of

the tree, but becomes much worse near the root, as a node re-joining at a high-up grand-parent or

at the root will likely need to traverse a significant proportion of the tree to find the ideal place.

SONAR has repair time behaviour which takes longer than ‘easy’ tree repairs, but deviates far

less, giving it a lower average.
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Figure 45: Standard TBCP (left) and SONAR-TBCP (right) network usage at the root node in
simulations.

The PlanetLab tests under similar conditions show that SONAR took an average time of

30s to repair a failure. While this appears to be a long time, it should be noted that PlanetLab

is a very heavily loaded environment [21] with many distributed systems sharing its resources.

Furthermore, the deployment is truly global, with nodes in America, Europe and Asia.

Performance overhead Again, the major two measures of overhead are network usage and

memory usage. Figure 45 shows the network usage of the two TBCP versions, as sampled at the

root node, which is representative for these purposes of the network in general, and also shows

us fine details.

The large jump in the standard TBCP version occurs when test data begins to be sent through

the tree, at around time 900. The network usage of the SONAR-supported version is clearly

higher during the initial construction of the overlay—this is due to the ‘active’ backup service,

which has to send full node backups around when changes occur, as opposed to the standard

version’s duties being limited to simply remembering which nodes are its grand-parent and root.

The tree protocol takes some time to stabilise, and so the backup service is unable to ‘back off’

in its dissemination aggressiveness until around time 1500. Failures began soon afterwards, and

network overhead from this point onwards is comparable to that of standard TBCP, except for

occasional spikes as a larger repair is needed. The SONAR version’s overhead drops slightly

at around time 2250 because one of the root’s children fails at this point, and the resulting

subtractive repair observes a less-loaded border node than the root to act as the repair hub and

take on the children of this failed node, leaving the root node with one less child node from this

point onwards (just before this drop, a brief spike can in fact be seen highlighting the overhead
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Figure 46: SONAR-supported TBCP network usage at the root node on PlanetLab.

of repair agreement here).

Figure 46 shows the SONAR-supported version’s network usage in its PlanetLab deployment,

giving a flavour of the real costs involved. The figure shows the root node’s network usage over

time in terms of kilobytes sent; simulation results are more abstract, showing the message sizes

sent in terms of the number of elements their packets contain.

The PlanetLab graph in figure 46 is a slightly different shape during the initialisation of the

overlay; this is because a somewhat (manually) optimised overlay construction protocol was used

on PlanetLab to more quickly build the tree with reduced stress on PlanetLab itself. It has no

effect on the post-initialisation behaviour of SONAR—the general trend of which is the same as

simulation, with reasonably low normal network usage, at around 5KB per second on average.

The node shown was involved in 4 repairs throughout the experiment (marked with arrows), and

these cause briefly higher volumes of network traffic, as also occasionally occurred in simulation.

Turning now to memory overhead, figure 47 shows SONAR-supported TBCP’s memory usage

in simulation. This again is due to node backup storage. Standard TBCP has no notable memory

usage, and so its graph is not shown. While memory usage here is measured in simulation units

of storage, by relating this to the PlanetLab network usage graph, we can see that memory usage

peaks at around 170KB.

Disruption due to failures During the entirety of each experiment, data was being sent

through the tree. This data was numbered sequentially, and each node recorded how many

pieces of data it missed throughout the simulation. In the standard TBCP tests, nodes missed

an average of 15.9% of all data items sent over the course of the experiment, with an average

of 0.3% lost in one continuous ‘gap’. With SONAR, nodes missed an average of 13.2% of all
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Figure 47: TBCP-SONAR memory usage

data items sent, with an average of 0.6% lost in one continuous gap. The higher overall loss in

standard TBCP is due to the disruption caused by the re-join repair approach. While this is

good for maintaining an optimal, balanced tree ‘shape’, it takes time for all children of a failed

node to find new places in the tree, and can cause some ‘displacement’ of other nodes in the

process.

Overlay performance The performance of TBCP is measured here by how much ‘workload’

its nodes have—i.e. how much each node has to contribute to the overlay. In TBCP this equates

to the number of children a node has in the tree—how many nodes it has to re-forward data to.

By the end of the simulations, standard TBCP had an average child count of 0.85; SONAR-

supported TBCP was marginally higher at 0.98. Bearing in mind that standard TBCP’s re-

join approach derives an optimal child count for the tree-building protocol, SONAR performs

reasonably well in distributing workload in its repairs6. The PlanetLab deployment of TBCP

performed slightly worse, with an average child count of 1.3. This is higher simply because of

different locations of failures in the PlanetLab tests, and because more of the overlay was failed

in the PlanetLab tests than in simulation, at 80% rather than 50%.

Using additive repairs In TBCP, the use of additive repairs means less of an added burden

on surviving nodes from taking up the extra child-count workload described above. This time,

100 ‘spare’ external hosts were assumed to be available, and the enabling of additive repairs in

6These figures may seem surprisingly low, but they are drawn downwards by the number of leaf-nodes in the
tree, i.e. nodes with no children.
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SONAR resulted in the average child count being at 0.92, instead of the average of 0.98 achieved

with subtractive repairs only (therefore becoming closer to the optimal).

Again, but for this simple configuration switch, the rest of SONAR remained unchanged.

Complicating factors Finally, to give some insight into how likely it is that some of the

‘complicating factors’ of the repair protocol occur in practice, in a selection of TBCP PlanetLab

experiments run, in which there were around 100 repairs each, an average of just 20% of these

repairs in each experiment had a border node failure. The need to expend much higher effort

to handle border node failures was therefore relatively rare in these experiments with randomly

selected failures, though obviously this is dependent upon the precise failure patterns that occur.

In terms of false-positives, looking again at results from PlanetLab, an average of just 4.2%

of the nodes checked for failure by each node were inaccurately reported as failed. Clearly

this is dependent upon the failure detection protocol used, and its configuration suitability to

its deployment, but this gives an indication of the frequency of false-positives in a practical

deployment setting, which is generally far too low to cause dangerous conflicting repairs.

Summary The cost of using SONAR is again higher than the proprietary fault-tolerance of

TBCP, and as with Chord this is most evident with the memory overhead of the backup service

implementation. General messaging overhead of SONAR is again on a par when the overlay

is stable, with backup maintenance costs creating higher overhead during periods of instability

(such as overlay construction), and brief periods of additional network overhead during repairs.

The impact of failures when using SONAR is on average less—i.e. it takes less time than the

re-join at grand-parent / root strategy, and there is therefore less data missed in total throughout

the tree. SONAR does finish with a slightly higher workload per-node, but it is not significant

enough to make use of the generic service infeasible.

7.2.3 Gnutella Super-Peer overlay

Finally, a Gnutella-like super-peer overlay network is examined under simulation. Again, two

versions were created, one with custom-built fault-tolerance mechanisms, and the other supported

by SONAR operating within the super-peer network. Network sizes of 320 nodes were used,
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Figure 48: Standard Gnutella (left) and SONAR-supported Gnutella (right) repair times distri-
bution.

and this was divided into 20 super-peers and 300 leaf-peers evenly distributed among the super-

peers7. 50% of the super-peers were failed over time. The Gnutella-like overlay’s proprietary

fault-tolerance approach was for super-peers to advertise to their connected leaf-peers a list of

alternative super-peers should a super-peer fail. If a leaf-peer detected the failure of its primary

super-peer, it would switch to one of these alternatives. Additionally, super-peers themselves

need to maintain their own connectivity, ensuring they have sufficient links to other super-peers

after failures both for effective searching and to avoid becoming isolated from the rest of the

network. This custom-built approach for Gnutella is a common strategy in super-peer overlays.

Repair speed SONAR again out-performed standard Gnutella in terms of average repair

speed, with standard Gnutella’s repairs taking on average 5 times longer than those under

SONAR. Similarly to TBCP, this is because some repairs in standard Gnutella are much slower,

caused by some leaf-peers taking a long time to locate an alternate super-peer. Figure 48 shows

the distribution of repair times for both versions, and as with TBCP shows that while many

repairs in standard Gnutella were faster to complete than under SONAR, there is much more

deviation in repair times with standard Gnutella.

By contrast, rather than being leaf-peer centric, SONAR repairs involve only the super-

peers, who select a repair coordinator, and this coordinator notifies displaced leaf-peers of their

new super-peer as part of its nodestate (i.e. resource table) injection.

7The smaller network size here is due to the higher per-node intensity of Gnutella nodes (and similarly Chord
nodes), which perform more tasks under the Gnutella protocol than does TBCP, making them much more time-
consuming under the high-resolution simulation tool used. The network sizes used for these two overlays are still
realistically large, and the decentralised nature of SONAR renders it unaffected by network size as demonstrated
with the larger TBCP tests (i.e., SONAR will scale as long as the overlay itself is designed to do so).
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Figure 49: Standard Gnutella (left) and SONAR-Gnutella (right) network usage at node 4

Performance overhead Again, the major two measures of overhead are network usage and

memory usage. Figure 49 shows the results for network usage for the two versions of Gnutella.

In the case of Gnutella, the initialisation process is very fast, and failures begin almost

immediately at time 60. From this point forward, both versions experience a series of spikes in

their respective graphs, with those in SONAR being more frequent and to a higher value. The

spikes seen in standard Gnutella are due to the additional network traffic expended by super-

peers to locate other super-peers to restore their desired connectivity level within the super-peer

network.

In SONAR, the smaller and more frequent ‘spikes’ that can be seen in the network usage

graph occur when a super-peer’s state changes, requiring the updating and re-distribution of the

backup of that super-peer. These changes to node state occur much more in Gnutella throughout

the experiment than in the other two overlays, and this is because when a leaf-peer downloads

a resource, it advertises the fact that it is now sharing this resource with its super-peer. As a

result, the super-peer updates its resource index, which requires a new backup to be created and

distributed by SONAR, as resource indices are stored as nodestate.

The even higher spikes in SONAR occur when a larger repair is undertaken, involving a

larger number of border nodes. Because the Gnutella super-peer network is a relatively densely

connected mesh topology, more border nodes are generally involved in repairs, making them

more expensive. This connection density additionally affects the backup service, which has more

immediate neighbours to distribute its node backups to.

Figure 50 shows the average memory usage results for both Gnutella versions. The general

profiles of the two graphs are the same, increasing over time as less remaining super-peers take
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Figure 50: Standard Gnutella (left) and SONAR-Gnutella (right) average memory usage

on more responsibilities, but the SONAR version uses more memory on average per-node, again

with the costs of generic backup and repair log storage (the difference more evident here because

super-peer backups are relatively large).

Disruption due to failures During each experiment, requests for data were being made from

leaf-peers; this involves sending their super-peer a lookup request, along with a search string,

the super-peer flooding this lookup through the super-peer network for a certain TTL, and each

receiving super-peer returning to the originating leaf-peer a list of other leaf-peers that host

matching resources. The originating leaf-peer then selects one of these results, and contacts that

leaf peer directly to download the resource. Finally, that leaf-peer adds the downloaded resource

to its local list of shared resources, and advertises this fact with its super-peer. Throughout the

simulation, leaf-peers kept a record of how many pieces of data were unobtainable, to gauge the

disruption caused by failures.

Despite the significant difference in repair times, the results here are very close—in the

standard tests, nodes missed a total of 0.49% of requested items, and in the SONAR tests,

nodes missed a total of 0.43%. This closeness is explained by the fact that some repairs in

standard Gnutella were completed more quickly than in SONAR, with just a few taking much

longer (and of these long repairs, some proportion of leaf-peers would have found an alternative

super-peer early on, completing their ‘step’ of the repair quickly).

Overlay performance Figure 51 shows the average resource index size of super-peers in the

two Gnutella versions, which equates to the workload of super-peers in terms of how many

requests they will be handling.
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Figure 51: Standard Gnutella (left) and SONAR-Gnutella (right) average resource list sizes

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500

Virtual time units ( x10-3)

A
ve

ra
g

e 
re

so
u

rc
e 

lis
t 

si
ze

 a
t 

su
rv

iv
o

rs

Figure 52: Gnutella-SONAR (additive) resource list sizes

SONAR workload finishes very slightly higher than standard Gnutella, seemingly creating

very slightly more workload per super-peer. This is actually because slightly more requests were

successfully made in the SONAR experiment due to repairs being faster, and thus resources

were replicated at slightly more leaf-peers following successful resource download.

Using additive repairs Again, a simple configuration option enables additive repairs, allow-

ing failed super-peers to be restored on alternative hosts where possible. With 5 such hosts

made available, figure 52 shows the resulting average workload of super-peers at the end of the

experiment, represented by their resource list sizes.

As can be expected, this is significantly lower than when only using subtractive repairs, as

the workload can be distributed across more hosts.

Summary The cost of using SONAR for Gnutella is again higher in terms of messaging

overhead at super-peers, this time more than with the previous two overlays considered. There

are two reasons for this; firstly that the backup service implementation needs to disseminate
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more frequent changes to the state of super-peers, and secondly that the more densely-connected

mesh of the super-peer network in Gnutella means that repairs incur more overhead (as more

border nodes need to agree). However, repair speed with SONAR is on average actually faster in

fully completing repairs than the per-leaf-peer approach of standard Gnutella, and interestingly

the SONAR repair model creates less work for leaf-peers, in that their ‘side’ of the repair is

automated by the super-peer coordinating the repair.

7.3 Genericity evaluation

The genericity of SONAR is difficult to exhaustively evaluate; and impossible to definitively

evaluate in terms of its genericity to future overlay networks, which may have vastly differ-

ent designs to current overlays. However, the key factors that make overlays compatible with

SONAR can be established, and from this the compatibility of arbitrary overlays—present and

future—can be found by quickly examining these criteria.

Genericity has two major dimensions—the overlay model defined by the SONAR API in

chapter 4, and the service implementations, such as the proposed recovery service implementation

from chapter 5. For example, while this recovery service implementation may not suit all overlay

network designs, an alternative implementation may still be possible while keeping the general

overlay model and possibly the same failure detection and backup service implementations.

7.3.1 Overlay Model & API

The overlay model has the key simple concepts of accessinfos and nodestates. Accessinfos may

have context tags, and collectively describe the topology that the overlay wishes to recover after

failures. Nodestates are optional, and contain any other state that an overlay would like to make

persistent. It is believed that this model is completely generic to every overlay design—every

overlay by definition has topology, and some overlays have other state. The make-up of these two

elements is left deliberately ‘open’ from SONAR’s point of view, allowing arbitrary definition by

the overlay. The two-way interaction model of the API is similarly minimal in its requirements,

and open to overlay definition.

Given that any overlay can potentially use SONAR, then, with this minimal and open API,

the questions are simply these: Are there overlays for which using a separated resilience service
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does not make sense; and are there overlays for which the specific recovery protocol of chapter 5

is inappropriate?

In addressing the first of these two questions, the findings of chapter 2 are briefly re-visted.

Four major overlay classes were covered; content dissemination, structured DHTs, semi-structured

resource discovery, and unstructured / randomised overlays.

It was found that overlays of the former three classes have definitive ‘functionality’ and

‘resilience’ parts of their protocols. Content dissemination overlays have tree repair strategies,

DHTs have replication, and semi-structured overlays have super-peer recovery strategies. All

must clearly also have failure detection protocols.

Unstructured / randomised overlays can be distinguished from this group, as their resilience

mechanism is often one-and-the same with their functional control protocols—a powerful example

of this is that, in a gossip overlay, the fact of a node not having been heard from as part of normal

gossiping can be used as failure detection. The normal topology maintenance protocol then

automatically compensates for this by pruning the offending node from its ‘view’ and soliciting

for alternative nodes to gossip with. As mentioned, however, such protocols are not currently

capable of automatically persisting non-topological state such as DHT data, instead relying on

external factors for this (such as the ‘automatic’ societal replication that occurs in Gnutella as

more users download a file).

A general rule-of-thumb is then this: If the resilience mechanism of an overlay is clearly dif-

ferent to its control protocol, then it is suitable to externalise this responsibility to SONAR. Any

overlay developer will know if they find themselves writing code beyond the overlay’s functional

protocols which is there only to deal with failures—if, for example, a failure detection protocol

is added beyond the functional needs of the overlay, this is a good point to consider re-using a

common service like SONAR.

From this point, a developer’s mind is on the question will a common service work with my

overlay? This is answered by the functionality provided by the sub-service implementations.

Each is now examined in turn.
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7.3.2 Service implementations

Failure detection is entirely generic, regardless of the implementation used—failure detection

protocols simply send their own messages to a given node, and receive similar messages from

nodes. The vast majority of failure detection protocols therefore always ‘work’, the only question

being how well each one works. This is affected mostly by the density of a topology, and the

expected speed of its hosting infrastructure (e.g. hosts and networks), and is thus a design choice.

Again, however, virtually any protocol will work in general settings.

Backup is similarly generic; backup data is shipped from its source host to other hosts in the

overlay, for lookup in case of failure. The data which is handled is that specified by the SONAR

APIs—topology data and optional additional state. Again, the only question is the performance

of this service in its deployment environment; its basic functionality will always work.

The only unknown is then the recovery service—to the overlay developer, will the manner

in which it makes modifications to my overlay be accurate, and allow my overlay to continue to

function as normal after a repair?

This in turn depends on the chosen implementation of the recovery service. The protocol

discussed in chapter 5 is now examined in terms of its assumptions on the way an overlay works.

It operates by discovering a border of live nodes around a failed node / failed region of

overlay, and selecting one of these border nodes as the repair coordinator. This coordinator is

provided with the following information: The agreed membership of the border set; the agreed

membership of the failed section; and the backups of each node in the failed section.

Using only this information, the coordinator must be able to repair the overlay. Strictly

speaking, repair strategies are designed to be pluggable, and so in the worst case the overlay

developer could create their own small module which takes the above information and derives a

repair for SONAR to enact. This capability aside, the two generic repair strategies suggested in

this thesis are i) additive repairs in which various numbers of nodes from the failed section are

restored, and ii) single-hub subtractive repairs in which border nodes replace their failed links

pointing into the failed section with a link carrying the same context to the coordinator, and the

coordinator creates a link to each other border node carrying the context of its own link(s) that

pointed into the failed section.
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Strategy (i) is valid as long as a failed overlay node can ‘cope’ with being physically re-located

while still representing its old topological and semantic place in the overlay. For example, a re-

located Chord node will retain the same hashed ID that it had before it failed, not generating a

new one based on its new physical location, as this would change the semantic meaning of the

node in relation to the rest of the overlay. One example scenario in which this may not work is

in an overlay where a node relied on a particular piece of hardware being present—not usually

the case in commonly-used overlays, but possible in more specialised ones.

Strategy (ii), with topology adaptation, is valid as long as the topology between border nodes

can be constructed legally in the way that the single-hub coordinator approach works—this is

acceptable in Chord’s core ring structure, TBCP’s tree structure and the mesh-network of the

Gnutella super-peer overlay (and by implication similar overlays to these three like SkipNet and

Overcast). Essentially, this compatiblity is a quick decision for the overlay developer based on

their knowledge of their overlay.

Taking a broader view, ultimately each sub-service of SONAR is a pluggable component,

and others can potentially be developed if the existing ones are entirely unsuitable for a given

overlay. The idea, however, is that each single pluggable service variant is generic to a wide

range of overlays, and a wide range of deployment environments, as has been shown with the

three developed in this work, and so far fewer variants are needed overall than is the case with

per-overlay implementations.

7.4 Summary

This chapter has examined the properties of the repair protocol proposed in chapter 5, showing

that its ‘normal case’ performance is good, scaling well per border node. It has additionally been

shown that the repair protocol’s performance in the face of cascading failures is reasonable, and

that it is robust to the presence of false positives, requiring a large per-node percentage to create

any problems. This chapter has also demonstrated the viability of the SONAR generic self-

repair approach as a whole with three representative overlay types, showing that its additional

overhead is acceptable, and that while it performs slightly worse in scenarios of very frequent

overlay change and high interconnectivity (and could thus perhaps be improved for such cases) its
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overall performance and flexibility is good. Finally, the genericity of SONAR has been examined,

showing that the prototype implementation is applicable to a wide range of overlays, and that

the modularity of the approach—both at the level of sub-service pluggability and repair strategy

pluggability—allows it to be used in alternate configurations when necessary, often while still

being able to keep some standard elements like the failure detection service in those alternate

configurations.
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8 Future directions

In this chapter, the state of this work is examined in terms of the next steps that could be taken

to further this research. The discussion here follows the three-service composition, and then

widens to view SONAR as a whole.

The backup service is the most obvious area of future work; while some current work could

fill its role, or simple implementations could suffice for many cases, a fully configurable, adaptive

implementation of this service would be beneficial—one which takes into account the observed

regional stability of the overlay, the resources available on hosts for storing backups, and their

perceived reliability, to provide a service which reacts to changes in the deployed overlay to

provide a high assurance service while minimising overhead.

Such a service could also take advantage of different deployment environments such as Grid

systems to leverage resources outside the overlay—such as regional, dedicated backup ‘servers’—

to further improve performance.

The failure detection service is in less need of attention, with several good alternatives avail-

able today for its implementation.

In terms of recovery, the proposed repair protocol is, of course, one of many possible imple-

mentations that could be encapsulated within the recovery service. It is however unique in its

ability to safely enact any form of repair, enabled with the notion of collaboration between the

parties interested in a given failure (defined as the ‘border set’ in chapter 5). This approach does

have limits, as exposed in the evaluation—the more nodes that collaborate in a repair, the more

costly it is to make that repair.

An interesting future direction would therefore be to examine methods of more finely control-

ling which nodes will collaborate in which repairs, beyond simply re-using the overlay’s neighbour-

ing relationship; such a capability would be particularly useful in densely connected topologies

where border sets may become quite large. One approach to this has been alluded to already

in the case of Chord. Here, the topology of Chord exposed to the service can be only the main

ring structure, with finger table links are stored as nodestate. This essentially identifies a ‘core’

topology in Chord which must be maintained, and a ‘secondary’ topology which is automatically

maintained by the overlay’s functional protocol so long as the core topology is intact.

130



It may be interesting to take this model further, perhaps to the point where core topologies

can be automatically identified, reducing the overhead involved in the repair protocol. Other

ways of scoping the nodes ‘interested’ in a given node’s failure may also be useful to explore,

such as only those nodes which have higher physical capacities.

Transparently building a kind of ‘repair interest’ overlay within the overlay being supported

may therefore be useful to get the most out of repairs by giving responsibility to limited numbers

of nodes who are ideal repairers. An interesting trade-off to consider here is that the more densely

connected these ‘interest’ relationships are, the slower repairs become as more nodes must agree,

but conversely the damage due to false-positives is avoided with a higher probability, because

the failure detector opinions of more nodes are being shared, and it becomes less likely that all

of them are incorrect.

Taking a wider view of the overlay network research community, new overlays are still too

often seen as being tied to a particular application and deployment environment—the concept of

an overlay as a single, re-usable system component is only just emerging, with work like Gridkit

and JXTA providing tools to support this model. Thus, the interplay between different overlays

is only just starting to be considered, where overlays are composed as a stack, and when multiple

overlays overlap and occupy the same overall system.

In these cases, fault-tolerance approaches can go further by ensuring that failure detection and

redundancy protocols streamline their activities where possible (e.g. where a host runs multiple

nodes either in a stack or as separate systems) so that overhead is minimised—and repair itself

can be envisaged as leveraging cooperative hosts, and working with overlapping overlays, to

provide a globally balanced experience.

There is also an interesting scope for generalised optimisation modules—while such a service

was considered early in this work, it was necessary to develop the repair aspects of the design

first, and this kind of intelligent, adaptive optimisation service is in itself a major undertaking,

much like the backup service.

In general, the further modularisation and composition of overlays presents an interesting

challenge, and one which can take overlays fully from single systems to interoperating and co-

supporting virtual networks.
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9 Conclusions

This thesis has presented the current state-of-the-art of overlay networks and their built-in re-

silience mechanisms, and surveyed existing work on generalised fault-tolerance support services

for distributed systems. The shortcomings of current per-overlay resilience approaches have been

addressed, showing that they create added work for overlay developers, particularly when the

fault-tolerance mechanisms are clearly distinct from the overlay’s functional protocols. Further,

there is routine duplication of this work, especially in functionally similar overlays like Chord

and SkipNet, where the functional similarity results in near-identical fault-tolerance approaches

created by their designers. With these ad-hoc approaches to fault-tolerance, there is a lack of

support for diverse deployment environments, and a lack of unified, easy to understand ‘con-

figuration parameters’ across all overlays in terms of their fault-tolerance, making the job of

application developers more difficult.

Furthermore, with the exception of failure detection protocols, which are well developed and

well-suited to peer-to-peer environments, classic fault-tolerance services for distributed systems

have been shown to be unsuited to deployment with overlay networks; almost all rely on addi-

tional managed infrastructure, require strict consistency rules unsuited to large-scale systems, or

require systems to be built in very specific ways.

In response to these shortcomings, this thesis has proposed SONAR, a suite of fully de-

centralised services to support the self-repair of a wide range of overlay networks, providing a

highly configurable and re-usable service which achieves a separation of concerns between an

overlay’s functionality and its fault-tolerance. The various facets of SONAR meet each of the

requirements set down following a survey of existing work in both overlays and fault-tolerance.

Each sub-service operating with SONAR is entirely decentralised, and naturally scales with

the overlay being supported, meeting requirement (1) of scalability. The separation of con-

cerns is achieved using a carefully designed API, promoting bi-directional interaction between

SONAR and the overlay it is supporting. By abstracting an overlay into its key components

of topology and state, SONAR is able to maintain a high degree of genericity. By allowing

the overlay to define its own semantic meaning within these key components, and further in

the enactment of repair itself, the specific requirements and properties of individual overlays are
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naturally supported. Detailed case studies of the Chord and TBCP overlays have demonstrated

the applicability of this approach in diverse settings. This meets requirement (2) of re-usability

and helps towards requirement (5) of genericity to past, present and future overlays.

Three major areas of fault-tolerance have been identified as being necessary for self-repair;

redundancy (backup), failure detection, and recovery. Current work for both the backup and

failure detection services has been reviewed, and a new approach to recovering from failures

in an overlay has been proposed for the recovery service. This approach leverages distributed

consensus, scoped to the area of a failure, to provide a strong repair primitive upon which many

different kinds of repair can be used. Building on this, the concept of adaptive repair has been

proposed, in which each failure is repaired in a way appropriate to the dynamics of the deployment

environment. This is enabled by the collaborative nature of the repair protocol, ensuring safety

for the most technically difficult repairs—adding new nodes to the overlay to replace failed

ones. This repair protocol meets requirements (3) and (4), being generically applicable across

multiple deployment environments, and being able to adapt to its deployment environment as

the properties of that environment change.

Finally, the strong modularity of the SONAR implementation architecture has been pre-

sented, which promotes pluggability of its sub-components, and is well suited to changing small

parts of SONAR while retaining others when necessary. This further supports meeting require-

ment (5) of genericity to past, present and future overlays—both at the level of repair strategies

under the proposed repair protocol, and the level of sub-services themselves, when a particular

implementation does not fit well with a specific overlay’s design.

All of this work has been evaluated in multiple respects. The properties of the proposed

repair protocol have been examined, demonstrating its scaling properties with increasing failed

section sizes, its ability to react to cascading failures with reasonable overhead, and its resilience

to false-positives. The performance of SONAR as a full self-repair service has been evaluated

against custom-built fault-tolerance solutions for three representative overlays, demonstrating its

acceptable overhead as a generic service, its generally good performance matching the custom-

built approaches in many respects, and its flexibility beyond those custom-built solutions. And

finally, the genericity of the overall approach to overlays past, present and future has been ex-
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amined, showing that an open, minimal API provides a great deal of flexibility, and a modular

architecture provides further support for diversity, both with pluggable sub-services and plug-

gable repair strategies under the generic repair protocol. Combined, these provide support for

many foreseeable overlay designs, in addition to those already tested in the evaluation.

In summary, this thesis thus contributes the following to the research fields of overlay networks

and fault-tolerance:

• A modular fault-tolerance service architecture suited to working in a peer-to-peer environ-

ment, providing generalised self-repair for crash-failures in overlay networks

• A way to effectively separate the concerns of fault-tolerance and functionality in overlay

networks, using a semantically-open overlay model and overlay-service API

• A novel, decentralised repair approach suitable for use with a range of overlays, which is

able to dynamically select repair strategies as appropriate for each failure

This thesis has shown that the separation of an overlay’s fault-tolerance from its functionality

is desirable in many cases due to the shortcomings of current approaches, is possible with an

appropriate API and generic repair protocol, and is feasible in terms of the performance of the

generic service and the additional overhead it brings.

With the emergence of overlay networks as the common approach to deploying new global

services, the provision of a common, configurable and adaptive dependability service is a positive

step towards the formalisation of overlays, and thus their viability as a highly re-usable system

component. Looking to the future, further research into an adaptive, generalised backup service

would be highly beneficial, as may a similarly generalised ‘optimisation’ service, and finding

alternative and possibly automated ways to scope the involved parties in each collaborative

repair may yield interesting performance results.
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1: procedure RepairProtocolp

2: loop
3: wait for some of p’s neighbours to fail
4: repeat
5: (BNodesp, FSectionp) ← ConstructFailedSectionView() . Phase1
6: SelectRepairStrategy(BNodesp, FSectionp)
7: Vp[] ←AgreeOnView(BNodesp, FSectionp) . Phase2
8: until Vp[] only contains accept . Agreement on the failed section
9: coordinator ← SelectCoordinator(BNodesp, FSectionp)

10: if p = coordinator then . I am the coordinator
11: PrepareRepair(BNodesp, FSectionp)
12: AddRepairToRepairLog()
13: EnactRepair(BNodesp, FSectionp) . Phase3
14: Send 〈coordinator, repairDetails, repairOK〉 to all nodes in BNodesp

15: RejectViewsContainingRepairedNodes()
16: else . I am not the coordinator
17: wait for 〈coordinator, repairDetails, repairOK〉 or coordinator ∈ FailedNodesp

18: end if
19: end loop
20: end procedure

Figure 53: Pseudo-code of the repair protocol when executed by node p

A Full round-optimised repair protocol pseudo-code

This appendix presents complete pseudo-code for the repair protocol of chapter 5. It is given

with minimal commentary, as its functionality and behaviour have already been described in full.

To begin, for completeness, figure 53 shows the overall protocol, and is identical to the previous

appearance of this figure.

The procedure ConstructFailedSectionView(), marking phase 1, is shown in figure 54,

along with a supporting procedure ConstructFailedSectionView() in figure 55.

The SelectRepairStrategy() procedure (called from line 6 of figure 53) is not shown as it

is pluggable, and the implementations suggested are trivial. AgreeOnView() is shown in figure

57, and has been slightly modified to include a call to the ProcessRound() procedure, which

expands upon how the end-of-round processing is performed, shown in figure 58. AgreeOn-

View() also here contains the round-reducing optimisation discussed in section 5.2.4. Finally,

the pre-AgreeOnView() message filtering procedure is shown in figure 56.
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1: procedure ConstructFailedSectionViewp

2: HighestRankedBN ← ∅
3: HighestRankedFS ← ∅
4: for all q ∈ failed neighbours do
5: repeat
6: noconflict ← true
7: (BNQ, FSQ, repairLogs) ← ConstructFailedSection(q)
8: if any node in FSQ has a backup conflicting with a repair log then
9: update affected backups in FSQ to resolve conflicts

10: noconflict ← false
11: end if
12: until noconflict
13: if (BNQ, FSQ)isrankedhigherthan(HighestRankedBN, HighestRankedFS) then
14: HighestRankedBN ← BNQ
15: HighestRankedFS ← FSQ
16: end if
17: end for
18: return (HighestRankedBN, HighestRankedFS)
19: end procedure

Figure 54: Pseudo-code of phase 1 when executed by node p

1: procedure ConstructFailedSectionp(q)
2: BNodes ← ∅
3: FSection ← q
4: for all u ∈ q′s neighbours do
5: if u is reported failed then
6: (NxtBNodes, NxtFSection) ← ConstructFailedSection(u)
7: BNodes ← BNodes ∪NxtBNodes
8: FSection ← FSection ∪NxtFSection
9: else

10: BNodes ← BNodes ∪ {u}
11: end if
12: end for
13: return (BNodes, FSection)
14: end procedure

Figure 55: Pseudo-code of ConstructFailedSection when executed by node p

1: procedure ReceiveViewMessage(〈r, BNodesk, FSectionk, Vk〉 from k)
2: if FSectionk contains incarnation IDs of nodes I have repaired before then
3: Send 〈rk, BNodesk, FSectionk, Vk[p] = reject, repair log〉 To k
4: else
5: addMessageToBuffer(〈r, BNodesk, FSectionk, Vk〉, k)
6: end if
7: end procedure

Figure 56: The pseudo-code of ReceiveViewMessage
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1: procedure AgreeOnViewp(BNodesp, FSectionp)
2: KBp[|BNodes|][|BNodes|][|BNodes|] . Initialise knowledge base
3: KBp[rn][c][k] ← ⊥ for all rn and c, and all k 6= p
4: KBp[rn][c][p] ← accept for all rn and c
5: OpposingNodesp ← ∅
6: for r ← 1 to the size of BNodesp − 1 do
7: if KB[r][k][j] for every k and j is 6= ⊥ then
8: return KBp[r][p]
9: end if

10: for each non-failed node q in BNodesp \OpposingNodesp do
11: Send 〈r, BNodesp, FSectionp, KBp[r][p] \KBp[r][q]〉 To q
12: end for
13: PendingNodesp ← BNodesp \OpposingNodesp

14: msgReceivedp ← ∅
15: repeat

16: wait

�����������
for next msg in buffer msgk = 〈rk, BNodesk, FSectionk, Vk〉
such that ((BNodesk, FSectionk) = (BNodesp, FSectionp) ∧ r = rk) or

(BNodesk, FSectionk) is lower ranked than (BNodesp, FSectionp)

(stop waiting and goto 19 if all PendingNodesp are reported failed)

17: removeMessageFromBuffer(msgk)
18: if (BNodesk, FSectionk) is lower ranked than (BNodesp, FSectionp) then
19: Send 〈rk, BNodesk, FSectionk, Vk[p] = reject〉 To k . Reject lower-ranked view
20: else
21: msgReceivedp ← msgReceivedp ∪ {msgk} . Take opinion on my view
22: PendingNodesp ← PendingNodesp \ {k}
23: end if
24: until PendingNodesp = ∅ or all PendingNodesp are reported failed
25: ProcessRound(msgReceivedp, OpposingNodesp)
26: end for
27: return KBp[r][p]
28: end procedure

Figure 57: The pseudo-code of AgreeOnView when executed by node p

1: procedure ProcessRoundp(msgReceivedp, OpposingNodesp)
2: for all 〈sender, r, BNodesj , FSectionj , Vj〉 ∈ msgReceivedp do
3: for all n ∈ BNodesj do
4: if Vj [n] = reject then
5: KBp[r + 1][p][n] ← reject
6: KBp[r + 1][sender][n] ← reject
7: OpposingNodesp ← OpposingNodesp ∪ {n}
8: else if Vj [n] = accept then
9: KBp[r + 1][p][n] ← accept

10: KBp[r + 1][sender][n] ← accept
11: end if
12: end for
13: end for
14: KBp[r + 2][n][m] ← KBp[r + 1][n][m] for every n and m
15: end procedure

Figure 58: The pseudo-code of ProcessRound when executed by p
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Figure 59: A node Q proposes a view including false positives (of nodes G, H and L), in which
other border nodes have no interest

B Avoiding deadlock caused by false-positives

This appendix follows on from chapter 5 and presents the specific case of deadlock that can be

caused by the occurrence of false positives, and provides a solution to avoid such cases. This

deadlock situation can occur as in figure 59, where some border nodes do not care about a view

being proposed to them because they (rightly) do not share the belief that their neighbours have

failed, as suggested by that view.

However, the proposing node must get an opinion from all nodes in its border set, else it will

not be able to proceed to take part in any future agreement attempts (and thus repairs)—for

example, if node L later proposes a view to Q which suggests a border set of Q, L, H and G

surrounding a single failed node, node Q will reject this view as it is lower-ranked than its own

view.

The resolution to this problem is conceptually simple; border nodes note the time at which a

view was proposed to them (necessarily including some of their neighbours in its failed section),

and if after a certain amount of time D those border nodes have not detected that their associated

neighbours have failed, they will send an FD REJECT message as their opinion for this view.

In the above example, this allows node P to reject Q’s view if P does not believe its neighbour

G is failed (after waiting a time D following Q’s proposal).

However, this creates one additional subtle problem; a node must be able to change its

opinion. This is a unique scenario which does not occur anywhere else in the protocol. Thus,

node P which previously communicated the opinion FD REJECT for a given view from node Q
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may legitimately later detect the failure of its associated neighbours (G in the above example),

effectively changing its opinion to ACCEPT . This can cause a problem, because this new

ACCEPT opinion could arrive first at Q, and be ‘used up’ by Q; the ACCEPT will not then

be sent again by P , causing a further potential deadlock scenario.

To address this, opinions have ‘dependencies’ attached to them; nodes remember if they are

changing their minds about a view, and associate a dependency with their new opinion on their

previous opinion. Nodes receiving opinions then note which opinions they have ‘used’. If a node

Q has an opinion x in its message buffer, and Q observes that it has not fulfilled a dependency

that this opinion has, then Q does not use x, instead leaving it in its message buffer.

Q will at some point receive the previous opinion y which x depends upon being processed first,

and Q will use this opinion in its current view agreement instance, not x8. If the communication

protocols in the environment guaranteed ordering in all cases, of course, this would not be a

problem—however, it is likely that in such a case node P will use two different connections to

node Q over which to send messages, as it is not actually a neighbour of Q; the first connection

will be used to send an FD REJECT , then P will ignore Q until it proposes its own view, for

which it may use a new connection to contact Q.

8This obviously requires in addition that Q won’t change the opinion of a view instance from y to x simply
because it has used y and still has x waiting. Instead, Q will save x for the next agreement instance—this is a
trivial local addition to the protocol.
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