A Generic Approach to Dependability in
Overlay Networks

Barry Porter and Geoff Coulson

Computing Department, Lancaster University, Lancaster, UK
(barry.porter; geoff)@comp.lancs.ac.uk

Overlay networks are virtual communication structures that are logically “laid
over” underlying hosting networks such as the Internet. They are implemented
by deploying application-level topology maintenance and routing functionality
at strategic places in the hosting network [1,2]. In terms of dependability, most
overlays offer proprietary “self-repair” functionality to recover from situations
in which their nodes crash or are unexpectedly deleted. This functionality is
typically orthogonal to the purpose of the overlay, and a systematic and complete
approach to dependability is rarely taken because it is not the focus of the work.
We therefore propose to offer dependability as a service to any overlay.

Dependability is a well-studied field in distributed applications, but many of
the existing approaches for applications are unsuitable for overlays; a common
approach is to submit an application to a fault-tolerant framework for controlled
execution within that framework [3]. We suggest instead that a dependability
service for overlays is built only from decentralized, lightweight agents which
exist alongside overlay nodes, operating at the same level and with the same
resources available to their nodes. In addition, such agents should maintain only
soft state which can be re-built automatically simply by existing in the envi-
ronment, making the service inherently self-repairing. An architectural model of
this is shown in figure 1.

Dependability Agent
failure Overla
: y
backpp detection | | Tecovery clon%ng Node
service service service service

Fig. 1. An example configuration of the proposed overlay dependability service.

This decentralization creates some interesting challenges, not least of all that
recovery of a failed node can be initiated by multiple different instances of the
recovery service that notice the failure of a neighbouring node. The service in-
stances must then ensure that exactly one proposed recovery is chosen from
potentially many in order to maintain a sensible system. We also note that over-
lays often operate in a purely end-user host environment, which can be quite
limited in resources (or at least resources that users are happy to give up). This

R. Meersman et al. (Eds.): OTM Workshops 2005, LNCS 3762, pp. 1819, 2005.
© Springer-Verlag Berlin Heidelberg 2005

makes some classic approaches infeasible, like the use of dedicated checkpointing
servers. Checkpointing is a well-known method of making elements of a distrib-
uted system survivable—their state is periodically saved on dedicated servers so
that it can be restored if they fail. Without the ability to provision checkpointing
servers, checkpoints must be stored on the hosts used by the overlay itself, and
must be distributed across those hosts in such a way that multiple failures are
survivable.

Checkpointing itself, though often used in distributed applications, is not very
suitable for overlays. Checkpointing is best used in deterministic systems, a class
that many overlays are not part of—the data stored by Chord and the members
of a multicast tree are both driven by users, for example, which makes those
aspects appear random. Since overlays can, then, be in a near-constant state of
non-determinism, their nodes would require frequent checkpointing, which can
amount to a significant performance overhead.

To help alleviate issues like this we propose that overlays be loosely defined
by two basic types from the point of view of the dependability service, which we
term accessinfo and nodestate records; the former provides the service with the
neighbours of a node to both save and communicate through, and the latter gets
any part of a node that needs to be backed up (both are defined by the overlay
and their internals are transparent to the service). If supported by the overlay,
nodestate records may themselves be divisible into nodestate units which could,
for example, map to individual resources stored at a node, again as determined
by the overlay. This finer-grained abstraction gives us opportunities to back up
only the elements of a node which change.

We are also interested in the performance of overlays when they are operating
across highly heterogeneous hosts, as many overlays assign equal responsibility to
each node regardless of the capabilities of its host. Re-using our definition, we can
migrate nodestate units to “cloned” versions of their original nodes instantiated
on alternative hosts, re-routing messages appropriately, to help alleviate pressure
on the more sparsely resourced hosts that are part of an overlay. This behaviour
is encapsulated in our cloning service, which monitors resources and attempts
to prevent resource exhaustion by migrating and tracking nodestate units.

We intend to investigate solutions to all of the presented problems and expand
on our loose overlay definition in our effort to create a generic, configurable and
efficient dependability service for overlay networks.

References

1. Mathy, L., Canonico, R., Hutchinson, D.: An Overlay Tree Building Control
Protocol. Proceedings of the 3rd International COST264 Workshop on Net-
worked Group Communication, London, UK, 2001

2. Stoica, I. et al: Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. Proceedings of SIGCOMM’01, California, USA, 2001

3. Bagchi, S., Whisnant, K., Kalbarczyk, Z., Iyer, R.: The Chameleon Infrastruc-
ture for Adaptive, Software Implemented Fault Tolerance. Proceedings of the
Symposium on Reliable Distributed Systems, Indiana, USA, 1998

