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Abstract—The operational environments of sensor networks
will alter over time, often due to hazardous conditions or fluctu-
ating resource availability; however this important characteristic
of sensor networks has yet to be fully addressed by current
middleware solutions. In this article, we present a reflective
middleware solution for co-ordinated dynamic reconfiguration
of middleware behaviour across nodes in a sensor network.
We evaluate this approach in a real-world case study; firstly,
we demonstrate how dynamic reconfiguration optimises the
performance and resource consumption of a sensor application,
and secondly we illustrate that the costs of reconfiguration are
not prohibitive in this domain.

I. INTRODUCTION

Wireless sensor networks are now employed in a wide range
of application domains including, for example, environmental
monitoring and disaster management. The role of sensor
middleware is to support the application developer, and shield
her from: i) the complexity of developing applications on
heterogeneous low-level hardware such as MICA Motes, Gum-
stix, or bespoke sensor technology, and ii) routing messages
across heterogeneous ad-hoc networks e.g. Bluetooth, 802.11b,
Zigbee, and others. Initial sensor middleware solutions have
concentrated on common communication abstractions (e.g.
event subscription [1], database-style [2], or tuple-spaces [3])
over a variety of ad-hoc message routing strategies [4]. Some
proposals have additionally considered the management of
resources within sensor networks e.g. power consumption
[5]. However, the dynamic change of a sensor network’s
operational environment and general context has yet to be
considered. For example, sensor network middleware used in
disaster scenarios will typically need to react to increasingly
hazardous conditions-e.g. flooding in a monitored location
may cause the network to perform poorly or fail. Therefore, we
believe that sensor middleware should be inherently adaptive.

In this paper we examine two key aspects of our Gridkit
middleware [6], which support dynamic reconfiguration in
sensor networks:

• Pluggable routing protocols, and overlay networks. In
Gridkit, sensor networks are created as virtual network
topologies (i.e. overlay networks), which can be selected
to support different application requirements. For ex-
ample, an overlay that conserves power may be most
appropriate for one application type, whereas an overlay
that focuses on robustness might be better in a different
setting. Different overlays optimise for different charac-

teristics, primarily by differing in terms of their topology
and in how messages are routed between nodes.

• Co-ordinated Dynamic Reconfiguration. To support re-
configuration of overlay behaviour, co-ordinated adap-
tation of the per-host middleware across all nodes in
the sensor network is required-e.g. the routing protocol
on every node must be updated. Gridkit introduces the
concept of distributed frameworks for this purpose; these
consist of a set of sensor nodes and a set of distributed
reflective meta-protocols that allow i) the inspection of
the current network-wide middleware configuration, and
ii) the coordinated reconfiguration of software elements
across nodes.

To evaluate our middleware we use Gridkit to deploy a
real-world sensor application, involving the management of
flooding in a river valley in the North-West of England. We
concentrate in particular on how our middleware can perform
system wide adaptations of the overlay networks to react
to changing conditions such as increasing water flow, and
sensor failure caused by flooding. We demonstrate that these
reconfigurations are beneficial to the operation of the sensor
network compared to static deployments, and they do not come
at a prohibitive cost in this type of application.

The results in this paper build upon previous work in [7]
where we reported on our general approach to supporting
distributed reconfiguration in sensor networks. This paper sig-
nificantly extends this work, with a quantitative evaluation of
our approach on the GumStix embedded computing platform
and in a real world WSN-based flood predictions scenario.
We also in [8] reported on how the GridStix hardware and
software platform has evolved over time, however this paper
focuses more upon a detailed evaluation of the ‘production’
GridStix 1.0 platform as was deployed at our River Ribble site
from 2005 - 2007.

II. GRIDKIT SENSOR MIDDLEWARE

Gridkit [6] is a generalized middleware framework that can
be specialized to operate in diverse application types (e.g.
Grid computing, pervasive computing, and mobile computing).
Here, we examine the specialization to the domain of sensor
middleware. Fundamentally, Gridkit is constructed as a set of
components developed using the OpenCOM v2 [9] component
model. This employs a minimal runtime that supports the
loading and binding of lightweight software components at
run-time.



Fig. 1. Gridkit specialised for Sensors

Figure 1 illustrates the key elements of Gridkit’s wireless
sensor network profile. Applications use the interaction frame-
work that contains a customizable event service. A node can
be just a publisher, just a subscriber, or, optionally, it can act as
a broker in the event service. This is then layered above a core
distributed framework known as the overlays framework. This
hosts, in a set of distributed overlay framework instances, a set
of per-overlay plug-in components, each of which embodies
i) a control element that cooperates with its peers on other
hosts to build and maintain some virtual network topology, and
ii) a forwarding element that routes messages over its virtual
topology. Different overlays can be employed here depending
on the conditions, e.g. a distributed spanning tree overlay, or
a proximity aware overlay. Each overlay can be dynamically
reconfigured to react to changing conditions (by changing the
control and/or forwarding component). For example, figure 1
shows an example reconfiguration of the distributed spanning
tree overlay; we can reconfigure the topology of the overlay
from a shortest-path tree to a fewest hop tree by replacing
the control component. This process is performed across all
nodes who are members of the overlay using the procedure
described in the following section.

III. DYNAMIC RECONFIGURATION

There are two important dimensions in the dynamic recon-
figuration of sensor networks: local and distributed. Local
adaptation is the dynamic reconfiguration of software ele-
ments on an individual node; whereas distributed adaptation
is the adaptation of the behaviour across a sensor network.
Therefore, a distributed adaptation consists of a series of
local adaptations. In Gridkit, dynamic reconfiguration is based
around software architecture elements known as local and
distributed component frameworks.

Fig. 2. Local Component Frameworks in Gridkit

A. Local Component Frameworks

The local component framework model (illustrated in figure
2) is based on the concept of composite components as
proposed in the OpenORB project [10]. Each framework has
a reflective meta-interface (ICFMetaInterface) that enables
inspection and dynamic adaptation of the local ‘architecture’
of the composite component in terms of its local components
and connections. Additionally, the integrity of each framework
is maintained in the face of dynamic change, using devel-
oper specified architectural rules plugged into the component
framework (through the IAccept interface).

The second aspect of the local component framework model
is the use of the configurator pattern [11] as illustrated in figure
2. A configurator is assigned to each framework instance,
and acts as a unit of autonomy for making decisions about
when and how to change the framework. Each configurator
maintains a set of local policies for its framework. It is
connected with the Gridkit context engine [6] to receive
relevant environmental events; and communicates with its host
framework through the meta-interface. Gridkit policies use the
Event-Condition-Action pattern. When an event is detected, it
triggers the corresponding action, which is a reconfiguration
script of component inserts, deletes, disconnects, connects, or
replaces.

B. Distributed Component Frameworks

A distributed component framework (illustrated in figure 3)
is a set of local component framework instances of the same
type located across a set of co-ordinated devices, typically
providing co-ordinated middleware functionality. The design
of the distributed framework model follows the same basic
themes as for local frameworks-i.e. the use of reflection to
support inspection and adaptation of software, and configura-
tors to enforce autonomic actions. The distributed component
framework model must be inherently more flexible than the
local model, as there are many more constraints that disallow
a single fixed model being utilised. We now discuss the
important elements of distributed frameworks in turn.

• Meta-Object Protocol & Reification Strategies. Each
distributed framework maintains a basic meta-object pro-
tocol (MOP) that reifies the information about the global
contents of the framework; this can be in terms of node



Fig. 3. Distributed Frameworks (per host components)

members, and also the component configurations on each
host. The MOP provides operations (through IDistribut-
edMetaArchitecture in figure 3) for the insertion and
deletion of local framework elements into/from a given
distributed framework, and the inspection of information
about the set of individual participants.

• Group-based membership support for the MOP. We
use a lightweight group membership service as the base
mechanism for distributing meta-data and reconfiguration
events; this data then builds the view of the system
wide architecture. The protocol is customisable: typically
different group membership overlays will suit different
sensor models-e.g. a sensor network with high node mo-
bility will require a different group membership overlay
from a more static network topology. So far, we have
used the scalable membership protocol SCAMP [12] to
maintain meta-data between members of a distributed
framework.

• Configurators. Distributed configurators (as seen in fig-
ure 3) follow the same pattern as for local frame-
works. They receive events about changing environmental
conditions, select policies and then perform distributed
reconfigurations using the MOP. However, individual
frameworks may have more than one configurator (e.g.
there could be one on every node). Therefore, consensus
protocols are used to ensure that all members of the
framework agree on the action to perform. Our evaluation
has so far focused on single configurators; however,
we are also investigating the introduction of selectable
and replaceable consensus algorithms into our distributed
frameworks.

• Quiescence. For safe dynamic reconfiguration it is im-
portant to ensure that updates complete atomically and
do not impact the integrity of the network. There are two

parts to this: i) making the framework safe to adapt, i.e.
placing it in a quiescent state, and ii) ensuring that the
reconfiguration is complete and correct. In our current
implementation, local framework instances maintain a
readers/writers lock to place it into a quiescent state: any
standard interface call or meta-inspect is a reader, any
meta-write is a writer. Hence, no reconfiguration can take
place locally while a thread is executing in the frame-
work. Currently our distributed frameworks use this ca-
pability; each local framework is placed into a quiescent
state through a command propagated via the meta-group
service. Once locally quiescent a notification is returned
to the configurator. Upon the condition that all members
are in a quiescent state then the reconfiguration continues.
After reconfiguration, like with local frameworks (IAccept
plug-in), the update can be checked through inspection
of the meta-data to validate the integrity of component
updates across multiple nodes. The disadvantage of this
approach is that it may be too resource intensive, and may
not scale suitably for large numbers of hosts. Therefore,
we are investigating replaceable decentralised strategies
for safely updating components.

IV. CASE-STUDY BASED EVALUATION

A. Background

We now discuss the use of the Gridkit sensor middleware in
an implemented real-world scenario: wireless sensor network-
based real-time flood forecasting in a river valley in the north
west of England. This scenario is described in additional detail
in [13].

In this scenario, a wireless sensor network (WSN) com-
prising of 20 nodes has been deployed to monitor depth
and flow conditions along a 2.5KM stretch of river in the
Yorkshire Dales in North-West England. The system monitors



water depth using pressure sensors and flow-rate using a
combination of image-based flow measurement and ultrasound
flow measurement. Sensor data is collected in real-time at
one or more designated ‘root’ nodes and forwarded from
there via GPRS to a prediction model that runs on a remote
computational cluster. Each sensor node (known as ‘GridStix’)
comprises a 400MHz XScale CPU, 64MB of RAM, 16MB of
flash memory, and Bluetooth and WiFi networking hardware
(the root nodes are also equipped with GPRS). Each GridStix
is powered by 4 watt solar array and a 12V 10Ah battery. They
run Linux 2.6, version 1.4 of the JamVM Java virtual machine
and the Gridkit version 1.5 WSN profile (figure 1). The
following section now discusses the role of reconfiguration
in this scenario.

In the scenario we used Gridkit with the distributed span-
ning tree overlay plug-in, which is used to disseminate sensor
data between a large number of sensor nodes and a small
number of root nodes. This plug-in is configured to operate in
two modes; fewest hop and shortest path:

• Shortest Path (SP) spanning trees are optimised to main-
tain a minimum distance in edge weights from each node
to the distinguished ‘root’ node; in our case edge weights
are derived from the power consumption of each pair-
wise network link; SP trees tend to consume less power
than FH trees, but offer poorer performance.

• Fewest Hop (FH) spanning trees are optimised to main-
tain a minimum of hops between each node and the
root; FH trees minimise the data loss that occurs due to
node failure, but are sub-optimal with respect to power
consumption.

The different properties of these overlays make them more
suitable for different environmental conditions. During qui-
escent conditions, when the criticality of sensor data is low,
the system is configured to use a shortest path spanning tree.
Conversely, during flooding conditions, when the criticality
of sensor data and risk of node-failure is high, the system
reconfigures to use a fewest hop spanning tree which is more
resilient and offers better performance.

B. Evaluating the Role of Reconfiguration

The benefits of reconfiguration have been evaluated primar-
ily through simulation of the Gridkit middleware in operation
in an example sensor deployment. The GridStix simulator
models the low-level properties of each node (available CPU,
available Battery, solar panel power production) and each
pairwise network link (round-trip-time, power-consumption,
bandwidth, delay, jitter, loss). This low-level data has been
measured empirically on the real-world system, which makes
the simulator highly accurate for this scenario. The visual-
isation sub-system of the simulator is shown in Figure 4
illustrating FH (left) and SP (right) overlay configurations.

The simulation was configured as follows: The simulation
period is 24 hours (midnight-to-midnight). Each node enters
the simulated period with a battery at 50% charge. Flood
conditions begin at 12PM and last until 6PM (the approximate
mean duration of a flood event at the site). Dawn occurs
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Fig. 5. Power Consumption of Overlay Configurations

at 8AM from which time solar power production is set to
WINTER SUN, when flood conditions begins at 12PM, solar
power production is set to HEAVY CLOUD, finally night
falls at 8PM (approximately mimicking late winter conditions,
when flooding is most prevalent). All nodes were programmed
to wake for one minute in every hour. During quiescent
conditions nodes transmit sensor readings at a rate of one
per minute. During flooding condition, nodes transmit sensor
readings at a rate of one per second. This is commensurate
with the increased requirements of performing real-time flood
modelling.

Throughout the simulated period, the system’s performance
has been evaluated in the context of three key metrics:

1) Performance: We measure this in terms of the latency
with which messages can be relayed from each sensor
node to the root node.

2) Resilience: The resilience of the network is a function of
the extent to which the failure of a given node reduces
the overall connectedness of the network. We measure
this as the number of viable routes between each node
and the root.

3) Power Consumption: Although the GridStix are
equipped with solar panels, power consumption is still
an extremely important factor. We infer this from the
per-node battery power consumed throughout the test.

In all cases we measure and plot each of these metrics av-
eraged for all nodes in the network, at intervals of one minute
throughout the duration of our trace. Figure 5 shows the battery
life of each node in the system using an SP configuration, an
FH configuration and an adaptive configuration, wherein when
flooding is detected (at noon), the middleware reconfigured
from using a low-power SP tree to a high-performance FH
tree.

Figure 5 shows that SP trees ensure that nodes maintain the
highest possible battery life throughout the test. Conversely,
FH trees result in the greatest battery power consumption



Fig. 4. FH (left) and SP (right) Spanning Trees in the Gridstix simulator

(though at the expense of performance and resilience as shown
below). As one might expect, where the system reconfigures
at flood time from an SP to a FH configuration (‘adapt’,
shown in green), battery power is maximised during quiescent
conditions (i.e. approximating SP), while increasing during
flooding conditions (i.e. approximating FH) - though at the
same time providing better performance and resilience, as
shown in figure 6 and 7 respectively. Finally, the graph
illustrates that the power consumed by reconfiguration, both
in the transmission of reconfiguration messages and in CPU-
usage is acceptably low. In fact, it is too small to be noticeable
in figure 5.

Figure 6 shows the mean reporting latency throughout
the test period. As one would expect, aside from normal
jitter, FH and SP configurations remain relatively constant
throughout the test. FH configurations demonstrate a mean
reporting latency of 11ms, while SP offers a reporting latency
of 28ms (though consuming significantly less power, as shown
in figure 5 above). Finally, where the system reconfigures
from an SP configuration during quiescent conditions to an
FH configuration during flood conditions (‘adapt’, shown in
green), performance is correspondingly low during quiescent
conditions, but high during flood conditions (though at the
expense of power).

Figure 7 illustrates the resilience of the system to node
failure, based upon the mean number of routes that are affected
by node failure. As FH trees have a typically lower node
degree they tend to be more resilient to node failure, while
SP trees have a typically higher degree and are therefore
significantly more vulnerable to node failure. As one would
expect, during quiescent periods, where nodes reconfigure
between overlays during flooding, system resilience matches
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Fig. 6. Performance of Overlay Networks

SP during quiescent periods and FH during flooding periods
(i.e. it is more resilient, but at the expense of power).

In summary, testing on a real-world system illustrates the
benefits of overlay reconfiguration. By configuring to a low-
power overlay during normal conditions and a high performing
and resilient overlay during flood conditions, battery life is ex-
tended, while maintaining system functionality during critical
conditions. We also illustrate that the cost of reconfiguration in
terms of additional power consumed, and reconfiguration time
does not significantly affect the power costs and performance
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of the sensor network.

V. RELATED WORK

There are a number of existing sensor middleware, some of
which were described in the introduction. These are important
solutions in identifying the key characteristics required by
sensor middleware, namely easy to use abstractions, suit-
able routing strategies, and resource management policies.
However, none of these pieces of work considers dynamic
reconfiguration and customisability to the same degree as
Gridkit.

Outside the domain of sensor networks there are a set of
technologies related to distributed reconfiguration. Kramer and
Magee [14] describe algorithms for distributed reconfigura-
tion that inspired our approach. k-Components [15] offers
a decentralised agent-based approach; i.e. each node makes
local decisions about adaptation, until a global consensus is
reached. Gridkit supports both centralised and decentralised
approaches, and in that manner can be tailored to resource-
constrained domains such as sensor networks. NecoMan [16]
offers an alternative approach to dynamic reconfiguration. It
supports safe, co-ordinated updates of distributed services,
typically related to network protocols. It has not yet been
applied to multiple reconfiguration domains to illustrate its
flexibility; however, it presents many interesting ideas that
could be applied within our frameworks. Ensemble [17] is a
micro-protocol stack framework that is able to adapt its config-
uration dynamically; however, the reconfiguration mechanism
is closely coupled to the micro-protocol implementation, and
isn’t as re-usable as Gridkit.

VI. CONCLUSIONS

In this paper, we have proposed the introduction of dynamic
reconfiguration into sensor middleware to ensure that the

behaviour of the sensor network is optimised in the face of
fluctuating conditions. We have demonstrated how the flexible
Gridkit middleware platform can be tailored specifically to the
sensor domain. In addition, we have introduced the concept
of reflective distributed frameworks to manage the reconfig-
uration of software components across the sensor network.
The approach was evaluated in a real-world sensor application,
illustrating the benefits of reconfiguration, which come with
acceptable costs.

There are a number of interesting future areas of research
inspired by this work. Firstly, the creation of higher-level
declarative languages that can be used by both middleware and
application developers to describe reconfiguration actions on
the sensor network, and also deal with potential conflicts that
may arise from multiple policies. Secondly, the introduction of
security measures to the distributed framework to ensure only
authentic nodes can join a framework, and only members of
the framework can make reconfigurations.
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