
Dynamic Reconfiguration in Sensor Middleware
Paul Grace, Geoff Coulson, Gordon Blair, Barry Porter, Danny Hughes

Computing Department
Lancaster University

Lancaster, UK
(gracep, geoff, gordon, porterbf, hughesdr)@comp.lancs.ac.uk

ABSTRACT
Middleware solutions for sensor networks have so far mainly
focused on communication abstractions, ad-hoc message routing
protocols, and power conservation techniques. We argue that
customisation and dynamic reconfiguration of sensor network
middleware are additional important dimensions to consider. This
paper describes a sensor middleware that can be customised to
suit different sensor application types, and provides a reflective
approach for co-ordinated network-wide dynamic reconfiguration
of sensor behaviour. To evaluate our approach we illustrate
customisation and dynamic reconfiguration of the Gridkit sensor
middleware in a flood-monitoring scenario.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns (Reflection).

General Terms
Management, Design, Experimentation.

Keywords
Sensor middleware, reflection, dynamic reconfiguration.

1. INTRODUCTION
Wireless sensor networks are used in a wide range of application
domains including, for example, environmental monitoring and
disaster management. The role of sensor middleware is to support
the application developer, and shield her from: i) the complexity
of developing applications on heterogeneous low-level hardware
such as MICA Motes, Gumstix, or bespoke sensor technology,
and ii) routing messages across heterogeneous ad-hoc networks
e.g. Bluetooth, 802.11b, Zigbee, and others. Hence, the initial
sensor middleware solutions have concentrated on common
communication abstractions (e.g. event subscription [11],
database-style [2, 13], or tuple-spaces [14]) over a variety of ad-
hoc message routing strategies [3,9]. Some proposals have
additionally considered the management of resources within
sensor networks e.g. power consumption [15].

However, existing sensor middleware proposals have yet to
approach the problems caused by the following two important

characteristics of sensor applications:
− Environmental diversity; sensor networks in different

application fields require different hardware, different
networks, different styles of communication. Hence, a fixed
middleware solution is not applicable to all applications;
rather a customisable middleware is potentially better
equipped for use across many application types.

− Dynamic change; sensor networks are deployed in
environments that are inherently subject to change, and
sensor network middleware must therefore be inherently
adaptive. For example, sensor network middleware used in
disaster scenarios will typically need to react to increasingly
hazardous conditions—e.g. flooding in a monitored location
may cause the network to perform poorly or fail.

We therefore suggest that sensor middleware must consider these
additional dimensions. In this paper, we examine three aspects of
our Gridkit middleware [7], which address these dimensions:
− Pluggable communication abstractions. Using these, the

application developer is able to select the appropriate
communication abstraction for their application. For
example, temperature monitoring might be best done using
event-subscription, whereas a streaming-based abstraction
may be better suited to video monitoring.

− Pluggable routing protocols, and overlay networks. In
Gridkit, sensor networks are created as virtual network
topologies (i.e. overlay networks), which can be selected to
support different application requirements. For example, an
overlay that conserves power may be most appropriate for
one application type, whereas an overlay that focuses on
robustness might be better in a different setting. Different
overlays optimise for different characteristics such as these
primarily by differing in terms of their topology and in how
messages are routed between nodes.

− Co-ordinated Dynamic Reconfiguration. Sensors need to
adapt their behaviour to cope with changing environmental
conditions—e.g. sensors could increase the frequency at
which they send messages, or change their routing protocol
to cope with increasing failure rates in the sensor network.
To support such cases, co-ordinated adaptation of the per-
host middleware across all nodes in the sensor network is
required—e.g. the routing protocol on every node must be
updated. Gridkit introduces the concept of distributed
frameworks for this purpose; these consist of a set of sensor
nodes and a set of distributed reflective meta-protocols that
allow i) the inspection of the current network-wide
middleware configuration, and ii) the coordinated
reconfiguration of software elements across nodes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. To evaluate our approach to sensor middleware we document in

this paper how Gridkit is customizable to support a real-world
case study involving the management of flooding in a river valley

MidSens’06, November 27-December 1, 2006 Melbourne, Australia

Copyright 2006 ACM 1-59593-424-3/06/11 …$5.00.

in the North-West of England. We concentrate in particular on
how our middleware is able to perform system wide adaptations
of the overlay networks to react to changing conditions such as
increasing water flow, and sensor failure due to flooding.

The remainder of the paper is structured as follows. Section
2 examines the Gridkit framework and its support for pluggable
communication abstractions and overlay networks. Section 3 then
describes the distributed frameworks and reflective meta-
protocols used for dynamic reconfiguration. Section 4 evaluates
the Gridkit middleware in its support of the case study. Section 5
investigates areas of related work, and section 6 draws
conclusions and proposes important areas of future research.

2. THE GRIDKIT SENSOR MIDDLEWARE
Gridkit [7] is a generalized middleware framework that can be
specialized to operate in diverse application domains; e.g. Grid
computing, pervasive computing, and mobile computing. In this
paper, we focus on tailoring Gridkit to the domain of sensor
middleware. Fundamentally, Gridkit is built in terms of a
component model called OpenCOM v2 [4]. This employs a
minimal runtime that supports the loading and binding of
lightweight software components at run-time. OpenCOM is used
in the construction of all higher-level middleware.

In Gridkit, middleware is built upon a core distributed
framework known as the overlays framework. This hosts, in a set
of distributed overlay framework instances, a set of per-overlay
plug-in components, each of which embodies i) a control element
that cooperates with its peers on other hosts to build and maintain
some virtual network topology, and ii) a forwarding element that
routes messages over its virtual topology.

Figure 1: Example Gridkit Sensor Middleware
Above the overlays framework is a set of further

customisable frameworks that provide functionality in various
orthogonal areas, and can optionally be included or not included
on different devices; these frameworks are discussed in more
detail in [7]. Using this framework approach, we have recently
developed the sensor middleware that is illustrated in figure 1. In
this, the interaction framework contains a customizable event
service. A node can be just a publisher, just a subscriber, or,
optionally, it can act as a broker in the event service.
Underpinning this framework is a set of overlays for the
distribution of events towards sinks. This is also customizable
from i) a centralized spanning tree using Dijkstra’s shortest path

algorithm, ii) Bellman-Ford’s decentralized shortest path tree
overlay, iii) a fewest hop tree, or iv) an overlay that is aware of
proximity. Hence, it is possible to customize both the interaction
framework level and the overlay level to suit individual
application requirements.

3. DYNAMIC RECONFIGURATION
There are two important dimensions in the dynamic
reconfiguration of sensor networks: local and distributed. Local
adaptation is the dynamic reconfiguration of software elements on
an individual node; whereas distributed adaptation is the
adaptation of the behaviour across a sensor network. Therefore, a
distributed adaptation consists of a series of local adaptations. In
Gridkit, dynamic reconfiguration is based around software
architecture elements known as component frameworks. There are
two styles of component framework supporting reconfiguration,
as discussed in the following two sub-sections.

3.1 Local Component Frameworks
The local component framework model (illustrated in figure 2) is
based on the concept of composite components as proposed in the
OpenORB project [1]. Each framework has a reflective meta-
interface (ICFMetaInterface in figure 2) that enables inspection
and dynamic adaptation of the local ‘architecture’ of the
composite component in terms of its local components and
connections. Additionally, the integrity of each framework is
maintained in the face of dynamic change, using developer
specified architectural rules plugged into the component
framework (through the IAccept interface).

Figure 2: Local Component Frameworks in Gridkit

The second aspect of the local component framework model
is the use of the configurator pattern [12] as illustrated in figure 2.
A configurator is assigned to each framework instance, and acts
as a unit of autonomy for making decisions about when and how
to change the framework. Each configurator maintains a set of
local policies for its framework. It is connected with the Gridkit
context engine [7] to receive relevant environmental events; and
communicates with its host framework through the meta-
interface. This separation of the configurator allows different
configurators and policies to be used for different framework
types; for example, a protocol framework may employ a policy
that restricts plug-in components to be composed only in ‘stacks’.
Typical configurator policies in Gridkit use the Event-Condition-
Action pattern. When an event is detected, it triggers the
corresponding action, which is a reconfiguration script of
component inserts, deletes, disconnects, connects, or replaces.

3.2 Distributed Component Frameworks
3.2.1 Overview
A distributed component framework is a set of local component
framework instances of the same type located across a set of co-
ordinated devices, typically providing co-ordinated middleware
functionality—e.g. an overlay network, a shared middleware
communication channel (group binding), etc. The design of the
distributed framework model follows the same basic themes as for
local frameworks—i.e. the use of reflection to support inspection
and adaptation of software, and configurators to enforce
autonomic actions. There are a number of important elements
concerned with the creation of distributed frameworks, which are
now discussed in turn.

3.2.2 Meta-Object Protocol & Reification Strategies
Each distributed framework (figure 3) maintains a basic meta-
object protocol (MOP) that reifies the information about the
contents of the framework in terms of the node members only.
The operations allow the insertion and deletion of local
framework elements into/from a given distributed framework, and
the inspection of information about the set of individual
participants. This interface is made available from the core
middleware (IDCFMetaInterface in figure 3).

Figure 3: Distributed Frameworks (per host components)

Figure 4: Alternative reification of meta-data

Meta-information can be reified to various locations; it does

not necessarily need to be stored at every node (especially in
resource-constrained sensor networks). Therefore, depending on
the precise requirements, the information could be stored at a
central node, or at a subset of the nodes, or at all of them. This

depends on the reification strategy employed by the meta-
protocol; i.e. whether the host contains the “Reified Meta Data”
component (see figure 3) that collects the published information.
For when there is more than one instance of this component in the
framework, consistency protocols must be utilized to ensure the
same view is maintained across nodes.

For the implementation of this meta-object protocol we use a
lightweight group membership service as the base mechanism for
distributing meta-data; this data then builds the view of the
system wide architecture. This is customizable in its
implementation: typically different group membership overlays
will suit different sensor models—e.g. a sensor network with high
node mobility will require a different group membership overlay
from a more static network topology. So far, we have used the
scalable membership protocol SCAMP [6] to maintain meta-data
between members of a distributed framework.

The basic meta-information maintained for a each
framework is shown in figure 4(a); this is essentially just the local
framework members of the distributed framework. However, this
is enough to find out all subsequent information about the
framework architecture; the meta-data contains references to the
local frameworks’ reflective interfaces (ICFMetaInterface), which
can then be used to reflect all the component information in the
distributed framework. However, a ‘push’-based reification model
with richer meta-data may also be employed. This will utilize
more resources, but may potentially reduce the network traffic
and time to make reconfiguration decisions, as the data can be
stored locally with the configurators. The richer meta-data is
shown in figure 4(b); this adds individual component and
connection information in the same format as provided in local
frameworks. To distribute the data in a ‘push’ fashion the local
meta-data is gossiped to all other members using the lightweight
group membership service. The selected storage points use the
information (component, connections, etc.) to build a distributed
view of the network wide framework.
3.2.3 Configurators
Distributed configurators (as seen in figure 3) follow the same
pattern as for local frameworks. They receive events about
changing environmental conditions, select policies and then
perform distributed reconfigurations. However, individual
frameworks may have more than one configurator (e.g. there
could be one on every node). Therefore, consensus protocols are
used to ensure that all members of the framework agree on the
action to perform. Our evaluation has so far focused on single
configurators (see section 4), however, we are also investigating
the introduction of selectable and replaceable consensus
algorithms into our distributed frameworks.
3.2.4 Quiescence
For safe dynamic reconfiguration it is important to ensure that
updates complete atomically and do not impact the integrity of the
network. There are two parts to this: i) making the framework safe
to adapt, i.e. placing it in a quiescent state, and ii) ensuring that
the reconfiguration is complete and correct.

In our current implementation, local framework instances
maintain a readers/writers lock to place it into a quiescent state:
any standard interface call or meta-inspect is a reader, any meta-
write is a writer. Hence, no reconfiguration can take place locally
while a thread is executing in the framework. Currently our
distributed frameworks use this capability; each local framework
is placed into a quiescent state through a command propagated via

the meta-group service. Once locally quiescent a notification is
returned to the configurator. Upon the condition that all members
are in a quiescent state then the reconfiguration continues. After
reconfiguration, like with local frameworks (IAccept plug-in), the
update can be checked through inspection of the meta-data to
validate the integrity of component updates across multiple nodes.
An invalid reconfiguration can be detected and repaired.

The disadvantage of the above approach is that it may be too
resource intensive, and may not scale suitably for large numbers
of hosts. Therefore, we are investigating replaceable decentralised
strategies for safely updating components. Like the reification and
configuration approaches, we advocate that the quiescence
strategy should also be selectable for the needs of an application.
3.2.5 Constraints
The distributed component framework model must be inherently
more flexible than the local model, as there are many more
constraints that disallow a single fixed model being utilised.
These are described as follows:

Resources. All nodes may not be equal; some nodes may
have more resources than others, e.g. a controller or gateway
node. Hence, some nodes may have the resources to make
reconfiguration decisions and enforce them, and others may not.
Additionally, participating in expensive reconfiguration protocols
may drain the resources of some sensors (see 4.2).

Adaptation styles. Frameworks should provide selectable
styles of adaptation: e.g. centralised versus decentralised. One
reconfiguration may be better suited to a centralised approach,
e.g. to ensure consistency; minimize resource usage; whereas
another may be suited by a decentralised approach.

4. EVALUATION
To evaluate our approach we demonstrate the effectiveness of
Gridkit in supporting a flood-monitoring sensor network,;
exploring how adaptations are performed in the face of changing
environmental conditions. We also measure the costs introduced
by increased flexibility and the ability to dynamically adapt.

4.1 Reconfiguration Case Study
The scenario examines how to predict flooding in a river valley in
the North-West of England. Hydrologists need to deploy sensors
(such as depth and flow-rate sensors); and the data from these is
fed into off-site flood prediction models. Figure 5 illustrates the
deployed sensor network. The sensors are placed at locations
along the river; depending on the distances between sensors,
different networks are used to communicate e.g. Bluetooth and
802.11b for shorter distances, GPRS for longer communication.
The sensor nodes employ the Gumstix hardware platform,
configured with multiple network interfaces (i.e. Bluetooth,
GPRS, and 802.11b); they have an Intel XScale 400MHz CPU, 64
Mb of RAM and 16Mb of flash memory. These devices support a
Linux kernel and run the Java 1.4.1 virtual machine. More detail
about the scenario is in [8].

Off-site data dissemination is supported by the use of
spanning tree-based overlays. These are commonly used in
wireless sensor networks to disseminate data from a large number
of sensors to a small number of logging or bridging nodes that
form the ‘root’ of the tree. Prime examples of spanning trees are
Shortest Path (SP) and Fewest Hop (FH) trees. FH trees are
optimized to maintain a minimum number of hops between each
node and the root. They minimise the data loss that occurs due to
node failure, but are suboptimal with respect to power

consumption. SP trees, on the other hand, are optimised to
maintain a minimum distance in edge weights from each node to
the root. As a result, they tend to consume less power than FH
trees, but are more vulnerable to node failure. Examples of the
two trees are shown in figure 6.

Site 1

Site 2 Site 3
Site 4

GPRS
802.11 802.11

GPRS

Figure 5: Sensor network to monitor river valley flooding

Figure 6: Spanning tree overlays for sensor networks

Our middleware is customized as described in section 2. The tree
root (gateway) node’s interaction type is configured as the
subscriber role to receive events of interest (i.e. those describing
flooding information). The remaining nodes configure the
interaction type to publish event information towards the
subscriber. These nodes are all underpinned by a spanning tree
overlay framework, which ensures that events are successfully
routed to the sink of the network. The middleware also reacts to
environmental changes. We now describe in detail the steps
involved in one example reconfiguration scenario.

State 1 – Normal Conditions
When the sensor network is operating under normal conditions,
the middleware is customized to be underpinned by an overlay
providing a shortest path tree connected using a Bluetooth
network. Hence, it is customized to save power.

State 2 – Flooding predicted
The scenario uses (locally computed) flood prediction models to
determine when the valley will flood. These models generate an
event stating that flooding is about to happen. Hence, the network
adapts itself to become less vulnerable to node failure. The nodes
configure themselves into a new topology – a FH tree.

Reconfiguration from state 1 to state 2
Reconfiguration is limited to the overlay framework only; hence,
we deploy a distributed overlay framework consisting of local
overlay framework instances. We illustrate the reconfiguration of
the distributed framework in figure 7. The implementation of a
spanning tree consists of three components in the local component

framework instance. The control component manages the
topology i.e. how this node is connected to other nodes in the tree.
The forwarder component routes messages towards the root of the
tree. The state component stores local data such as neighbour
nodes. The implementation of the shortest-path tree and fewest
hop tree differ only in the control component—i.e. nodes are
connected to neighbours based on different metrics. Therefore, to
reconfigure the overlay from a shortest path tree to a fewest hop
tree the control component must be reconfigured on each node.

The case study is small scale, with limited node mobility;
therefore, the distributed overlay framework consists of a single
configurator that stores the meta-data for the framework, reacts to
the flooding event produced by the prediction models, and enacts
the reconfiguration on each of the nodes to ensure that they are
safely and accurately updated.

Figure 7: Reconfiguring the control component across 3 hosts
For space reasons, we illustrate only a single reconfiguration

example. However, the distributed framework approach can be
applied more generally. We believe it will support
reconfigurations for alternative co-operating middleware
functionality. For example, alternative overlay reconfigurations:
changing the routing strategy by replacing the forwarder
components, or increasing the dependability of the overlay by
inserting new nodes into the framework, or replacing the repair
algorithms. Similarly, it can be applied in different application
domains such as multimedia and mobile e.g. the communication
binding can switch across all hosts from streaming to text
messaging when there is a reduction in available bandwidth.

4.2 Quantitative Costs
Our approach introduces complexity and autonomous behaviour
into the realm of sensor middleware. Here we examine some of
the costs that these bring. Gridkit is currently implemented using
Java, and hence requires a virtual machine to be available on each
sensor node (that said, Gridkit itself is language independent, and
the approach could easily be replicated using different language
implementations). In this section, we examine the memory
costs—i.e. how much memory footprint is required to run the
Gridkit middleware. This is a function of the Java class size. We
next examine the dynamic memory footprint of the cost of
creating dynamic frameworks: i.e. how much run-time memory.

4.2.1 Memory Footprint Cost of Middleware
Table 1 describes the static memory footprint cost (i.e. size on
disk) of the jar files that make up the core elements of the sensor
middleware. These show that a reasonable amount of memory
space is required for each customised personality e.g. the

publisher role in a distributed framework totals 236 Kbytes; this
easily fits onto the Gumstix, however is too large for minimal
sensors e.g. Motes. This is constrained by the use of Java, and we
are investigating C based approaches to minimise these values.

4.2.2 Dynamic Memory Cost of Meta-Data
Figure 8 illustrates the expense of maintaining meta-data in the
network. This is a measure of the size of data stored in a node’s
system memory during the operation of the distributed framework
that manages the spanning tree overlay (figure 7). The graph
shows that meta-data held about local frameworks (3 connected
components) remains constant irrespective of the number of nodes
in the network. The basic distributed meta-data (figure 4a)
increases a small constant amount for each new node in the
network (approx. 144 bytes). However, the richer meta-data
(figure 4b) sees a greater constant increase in system memory use
due to the storage of component meta-information. However, in
the scenario, only the root nodes maintain basic and richer meta-
data; the cost is not spread across the network.

Table 1: Static Memory Footprints of sensor middleware

Component Static Memory (Kbytes)

OpenCOM runtime 76

Gridkit Core Middleware 40

Group-based Meta-Architecture 52

Publisher Role 24

Subscriber Role 36

Spanning Tree Overlay 44

Figure 8: Dynamic Memory Costs of meta-data

5. Related Work
There are a number of existing sensor middlewares, some of
which were described in the introduction. These are important
solutions in identifying the key characteristics required by sensor
middleware, namely easy to use abstractions, suitable routing
strategies, and resource management policies. However, none of
these pieces of work considers dynamic reconfiguration and
customisability to the same degree as Gridkit.

Outside the domain of sensor networks there are a set of
technologies related to distributed reconfiguration. For example,
k-Components [5] offers a decentralised agent-based approach;

i.e. each node makes local decisions about adaptation, until a
global consensus is reached. Gridkit supports both centralised and
decentralised approaches, and in that manner can be tailored to
resource-constrained domains such as sensor networks. NecoMan
[10] offers an alternative approach to dynamic reconfiguration. It
supports safe, co-ordinated updates of distributed services,
typically related to network protocols. It has not yet been applied
to multiple reconfiguration domains to illustrate its flexibility;
however, it presents many interesting ideas that could be applied
within our frameworks. Ensemble [16] is a micro-protocol stack
framework that is able to adapt its configuration dynamically;
however, the reconfiguration mechanism is closely coupled to the
micro-protocol implementation, and isn’t as re-usable as Gridkit.

6. Conclusions and Future Work
In this paper, we have proposed the consideration of new
dimensions in sensor middleware i.e. it should be customizable
for the application environment, and also dynamically
reconfigurable to change the behaviour of the sensor network. We
have demonstrated how the flexible Gridkit middleware platform
can be tailored specifically to the sensor domain. We have
provided a component-based programming model for the
development of sensor middleware and applications. In addition,
we have introduced the concept of reflective distributed
frameworks to manage the reconfiguration of software
components across the sensor network. The approach was
evaluated in a real-world sensor application, and shown that
although the added complexity adds a cost to the performance this
is not confining. Finally, we identify that this work is highly
complementary to existing sensor middleware research e.g. ad-
hoc message routing and power management.

There are a number of interesting future areas of research
inspired by this work. Firstly, the creation of higher-level
declarative languages that can be used by both middleware and
application developers to describe reconfiguration actions on the
sensor network, and also deal with potential conflicts that may
arise from multiple policies. Secondly, the introduction of
security measures to the distributed framework to ensure only
authentic nodes can join a framework, and only members of the
framework can make reconfigurations. Finally, the investigation
of resource management policies (local and global); these will be
used to adapt the middleware behaviour to conserve resources
such as network bandwidth and battery power.

7. ACKNOWLEDGMENTS
Our thanks to Phil Greenwood, Francois Taiani, David Duce,

Chris Cooper, Musbah Sagar, Jason Li, and Mohammed Younis
for their contributions and inputs to this work.

8. REFERENCES
[1] Blair, G., et al. “The design and implementation of Open

ORB 2”. IEEE Distributed Systems Online, 2(6), Sept 2001.
[2] Bonnet, P., Gehrke, J. and Seshadri, P. Querying the

Physical World. IEEE Personal Communications, 7, 5
(October 2000), 10–15.

[3] Braginsky, D., and Estrin, D. Rumor routing algorthim for
sensor networks. In Proc. of the 1st ACM Int. workshop on
Wireless sensor networks and applications (2002), ACM
Press, pp. 22--31.

[4] Coulson, G., et al. A Component Model for Building
Systems Software. In Proc. of the Software Engineering and
Applications (SEA’04), Cambridge, MA, USA, Nov 04.

[5] Dowling, J. The Decentralised Coordination of Self-Adaptive
Components for Autonomic Distributed Systems. PhD Thesis.
Trinity College, Dublin, 2004.

[6] Ganesh, A., Kermarrec, A., Massoulie, L. SCAMP: Peer-to-
peer lightweight membership service for large-scale group
communication. In Proc. of the 3rd Int.Workshop on
Networked Group Communication, London, UK (2001).

[7] Grace, P., et al. Deep Middleware for the Divergent Grid. In
Proc. of ACM/IFIP International Middleware Conference,
Grenoble, France, December 2005.

[8] Hughes D., et al.. An Intelligent and Adaptable Flood
Monitoring and Warning System. In Proc. 5th UK E-Science
All Hands Meeting (AHM’06), Nottingham, UK, 2006.

[9] Intanagonwiwat, C., Govindan, R. and Estrin, D. Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Proc. of the 6th MOBICOM
Conference, Boston, MA, USA. August, 2000.

[10] Janssens, N., Michiels, S., Holvoet, T. and Verbaeten, P.
NeCoMan: Middleware for Safe Distributed Service
Deployment in Programmable Networks. In Proc. of
Middleware 2004, Toronto, Canada, 2004.

[11] Jiao, B., Son, S. and Stankovic, J. GEM: Generic Event
Service Middleware for Wireless Sensor Networks. In Proc.
of the 2nd International Workshop on Networked Sensing
Systems (INSS). San Diego, California, USA, June 2005.

[12] Kon. F. Automatic Configuration of Component-Based
Distributed Systems. PhD Thesis. University of Illinois at
Urbana-Champaign, May, 2000.

[13] Madden, S., Franklin, M., Hellerstein, J. and Hong, W. TAG:
a Tiny Aggregation Service for Ad-Hoc Sensor Networks. In
OSDI 2002, Boston, USA, December 2002.

[14] Murphy, A. and Picco, G. Transiently Shared Tuple Spaces
in Sensor Networks. In Proc. Workshop on Middleware for
Sensor Networks, San Francisco (CA, USA), June 2006.

[15] Slijepcevic, S., and Potkonjak, M. Power efficient
organization of wireless sensor networks. In Proc. IEEE
International Conference on Communications, vol. 2, pp
472-476, Helsinki, Finland, June 2001.

[16] van Renesse, R, Birman, K, Hayden, M, Vaysburd, A. and
Karr, D. Adaptive Systems Using Ensemble. Software
Practice and Experience 28:9 (August 1998), 963-979

	1. INTRODUCTION
	2. THE GRIDKIT SENSOR MIDDLEWARE
	3. DYNAMIC RECONFIGURATION
	3.1 Local Component Frameworks
	3.2 Distributed Component Frameworks
	3.2.1 Overview
	3.2.2 Meta-Object Protocol & Reification Strategies
	3.2.3 Configurators
	3.2.4 Quiescence
	3.2.5 Constraints

	4. EVALUATION
	4.1 Reconfiguration Case Study
	4.2 Quantitative Costs
	4.2.1 Memory Footprint Cost of Middleware
	4.2.2 Dynamic Memory Cost of Meta-Data
	

	5. Related Work
	6. Conclusions and Future Work
	7. ACKNOWLEDGMENTS
	8. REFERENCES

