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ABSTRACT 
Middleware solutions for sensor networks have so far mainly 
focused on communication abstractions, ad-hoc message routing 
protocols, and power conservation techniques. We argue that 
customisation and dynamic reconfiguration of sensor network 
middleware are additional important dimensions to consider. This 
paper describes a sensor middleware that can be customised to 
suit different sensor application types, and provides a reflective 
approach for co-ordinated network-wide dynamic reconfiguration 
of sensor behaviour. To evaluate our approach we illustrate 
customisation and dynamic reconfiguration of the Gridkit sensor 
middleware in a flood-monitoring scenario.   

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Patterns (Reflection).  

General Terms 
Management, Design, Experimentation. 

Keywords 
Sensor middleware, reflection, dynamic reconfiguration. 

1.  INTRODUCTION 
Wireless sensor networks are used in a wide range of application 
domains including, for example, environmental monitoring and 
disaster management.  The role of sensor middleware is to support 
the application developer, and shield her from: i) the complexity 
of developing applications on heterogeneous low-level hardware 
such as MICA Motes, Gumstix, or bespoke sensor technology, 
and ii) routing messages across heterogeneous ad-hoc networks 
e.g. Bluetooth, 802.11b, Zigbee, and others. Hence, the initial 
sensor middleware solutions have concentrated on common 
communication abstractions (e.g. event subscription [11], 
database-style [2, 13], or tuple-spaces [14]) over a variety of ad-
hoc message routing strategies [3,9].  Some proposals have 
additionally considered the management of resources within 
sensor networks e.g. power consumption [15]. 

However, existing sensor middleware proposals have yet to 
approach the problems caused by the following two important 

characteristics of sensor applications: 
− Environmental diversity; sensor networks in different 

application fields require different hardware, different 
networks, different styles of communication. Hence, a fixed 
middleware solution is not applicable to all applications; 
rather a customisable middleware is potentially better 
equipped for use across many application types. 

− Dynamic change; sensor networks are deployed in 
environments that are inherently subject to change, and 
sensor network middleware must therefore be inherently 
adaptive. For example, sensor network middleware used in 
disaster scenarios will typically need to react to increasingly 
hazardous conditions—e.g. flooding in a monitored location 
may cause the network to perform poorly or fail. 

We therefore suggest that sensor middleware must consider these 
additional dimensions. In this paper, we examine three aspects of 
our Gridkit middleware [7], which address these dimensions: 
− Pluggable communication abstractions. Using these, the 

application developer is able to select the appropriate 
communication abstraction for their application. For 
example, temperature monitoring might be best done using 
event-subscription, whereas a streaming-based abstraction 
may be better suited to video monitoring. 

− Pluggable routing protocols, and overlay networks. In 
Gridkit, sensor networks are created as virtual network 
topologies (i.e. overlay networks), which can be selected to 
support different application requirements. For example, an 
overlay that conserves power may be most appropriate for 
one application type, whereas an overlay that focuses on 
robustness might be better in a different setting. Different 
overlays optimise for different characteristics such as these 
primarily by differing in terms of their topology and in how 
messages are routed between nodes. 

− Co-ordinated Dynamic Reconfiguration. Sensors need to 
adapt their behaviour to cope with changing environmental 
conditions—e.g. sensors could increase the frequency at 
which they send messages, or change their routing protocol 
to cope with increasing failure rates in the sensor network. 
To support such cases, co-ordinated adaptation of the per-
host middleware across all nodes in the sensor network is 
required—e.g. the routing protocol on every node must be 
updated. Gridkit introduces the concept of distributed 
frameworks for this purpose; these consist of a set of sensor 
nodes and a set of distributed reflective meta-protocols that 
allow i) the inspection of the current network-wide 
middleware configuration, and ii) the coordinated 
reconfiguration of software elements across nodes. 
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in the North-West of England. We concentrate in particular on 
how our middleware is able to perform system wide adaptations 
of the overlay networks to react to changing conditions such as 
increasing water flow, and sensor failure due to flooding. 

The remainder of the paper is structured as follows. Section 
2 examines the Gridkit framework and its support for pluggable 
communication abstractions and overlay networks. Section 3 then 
describes the distributed frameworks and reflective meta-
protocols used for dynamic reconfiguration. Section 4 evaluates 
the Gridkit middleware in its support of the case study. Section 5 
investigates areas of related work, and section 6 draws 
conclusions and proposes important areas of future research. 

2. THE GRIDKIT SENSOR MIDDLEWARE 
Gridkit [7] is a generalized middleware framework that can be 
specialized to operate in diverse application domains; e.g. Grid 
computing, pervasive computing, and mobile computing. In this 
paper, we focus on tailoring Gridkit to the domain of sensor 
middleware. Fundamentally, Gridkit is built in terms of a 
component model called OpenCOM v2 [4]. This employs a 
minimal runtime that supports the loading and binding of 
lightweight software components at run-time. OpenCOM is used 
in the construction of all higher-level middleware.   

In Gridkit, middleware is built upon a core distributed 
framework known as the overlays framework. This hosts, in a set 
of distributed overlay framework instances, a set of per-overlay 
plug-in components, each of which embodies i) a control element 
that cooperates with its peers on other hosts to build and maintain 
some virtual network topology, and ii) a forwarding element that 
routes messages over its virtual topology. 

 

 
 

Figure 1: Example Gridkit Sensor Middleware 
Above the overlays framework is a set of further 

customisable frameworks that provide functionality in various 
orthogonal areas, and can optionally be included or not included 
on different devices; these frameworks are discussed in more 
detail in [7]. Using this framework approach, we have recently 
developed the sensor middleware that is illustrated in figure 1. In 
this, the interaction framework contains a customizable event 
service. A node can be just a publisher, just a subscriber, or, 
optionally, it can act as a broker in the event service. 
Underpinning this framework is a set of overlays for the 
distribution of events towards sinks. This is also customizable 
from i) a centralized spanning tree using Dijkstra’s shortest path 

algorithm, ii) Bellman-Ford’s decentralized shortest path tree 
overlay, iii) a fewest hop tree, or iv) an overlay that is aware of 
proximity. Hence, it is possible to customize both the interaction 
framework level and the overlay level to suit individual 
application requirements. 

3.  DYNAMIC RECONFIGURATION 
There are two important dimensions in the dynamic 
reconfiguration of sensor networks: local and distributed. Local 
adaptation is the dynamic reconfiguration of software elements on 
an individual node; whereas distributed adaptation is the 
adaptation of the behaviour across a sensor network. Therefore, a 
distributed adaptation consists of a series of local adaptations. In 
Gridkit, dynamic reconfiguration is based around software 
architecture elements known as component frameworks. There are 
two styles of component framework supporting reconfiguration, 
as discussed in the following two sub-sections. 

3.1  Local Component Frameworks 
The local component framework model (illustrated in figure 2) is 
based on the concept of composite components as proposed in the 
OpenORB project [1]. Each framework has a reflective meta-
interface (ICFMetaInterface in figure 2) that enables inspection 
and dynamic adaptation of the local ‘architecture’ of the 
composite component in terms of its local components and 
connections. Additionally, the integrity of each framework is 
maintained in the face of dynamic change, using developer 
specified architectural rules plugged into the component 
framework (through the IAccept interface). 
 

 
Figure 2: Local Component Frameworks in Gridkit 

The second aspect of the local component framework model 
is the use of the configurator pattern [12] as illustrated in figure 2. 
A configurator is assigned to each framework instance, and acts 
as a unit of autonomy for making decisions about when and how 
to change the framework.  Each configurator maintains a set of 
local policies for its framework. It is connected with the Gridkit 
context engine [7] to receive relevant environmental events; and 
communicates with its host framework through the meta-
interface. This separation of the configurator allows different 
configurators and policies to be used for different framework 
types; for example, a protocol framework may employ a policy 
that restricts plug-in components to be composed only in ‘stacks’. 
Typical configurator policies in Gridkit use the Event-Condition-
Action pattern. When an event is detected, it triggers the 
corresponding action, which is a reconfiguration script of 
component inserts, deletes, disconnects, connects, or replaces. 



3.2  Distributed Component Frameworks 
3.2.1  Overview 
A distributed component framework is a set of local component 
framework instances of the same type located across a set of co-
ordinated devices, typically providing co-ordinated middleware 
functionality—e.g. an overlay network, a shared middleware 
communication channel (group binding), etc. The design of the 
distributed framework model follows the same basic themes as for 
local frameworks—i.e. the use of reflection to support inspection 
and adaptation of software, and configurators to enforce 
autonomic actions. There are a number of important elements 
concerned with the creation of distributed frameworks, which are 
now discussed in turn. 

3.2.2  Meta-Object Protocol & Reification Strategies 
Each distributed framework (figure 3) maintains a basic meta-
object protocol (MOP) that reifies the information about the 
contents of the framework in terms of the node members only. 
The operations allow the insertion and deletion of local 
framework elements into/from a given distributed framework, and 
the inspection of information about the set of individual 
participants. This interface is made available from the core 
middleware (IDCFMetaInterface in figure 3). 
 

 
 

Figure 3: Distributed Frameworks (per host components) 

 
Figure 4: Alternative reification of meta-data 

 
Meta-information can be reified to various locations; it does 

not necessarily need to be stored at every node (especially in 
resource-constrained sensor networks). Therefore, depending on 
the precise requirements, the information could be stored at a 
central node, or at a subset of the nodes, or at all of them. This 

depends on the reification strategy employed by the meta-
protocol; i.e. whether the host contains the “Reified Meta Data” 
component (see figure 3) that collects the published information. 
For when there is more than one instance of this component in the 
framework, consistency protocols must be utilized to ensure the 
same view is maintained across nodes. 

For the implementation of this meta-object protocol we use a 
lightweight group membership service as the base mechanism for 
distributing meta-data; this data then builds the view of the 
system wide architecture. This is customizable in its 
implementation: typically different group membership overlays 
will suit different sensor models—e.g. a sensor network with high 
node mobility will require a different group membership overlay 
from a more static network topology. So far, we have used the 
scalable membership protocol SCAMP [6] to maintain meta-data 
between members of a distributed framework. 

The basic meta-information maintained for a each 
framework is shown in figure 4(a); this is essentially just the local 
framework members of the distributed framework. However, this 
is enough to find out all subsequent information about the 
framework architecture; the meta-data contains references to the 
local frameworks’ reflective interfaces (ICFMetaInterface), which 
can then be used to reflect all the component information in the 
distributed framework. However, a ‘push’-based reification model 
with richer meta-data may also be employed. This will utilize 
more resources, but may potentially reduce the network traffic 
and time to make reconfiguration decisions, as the data can be 
stored locally with the configurators. The richer meta-data is 
shown in figure 4(b); this adds individual component and 
connection information in the same format as provided in local 
frameworks. To distribute the data in a ‘push’ fashion the local 
meta-data is gossiped to all other members using the lightweight 
group membership service. The selected storage points use the 
information (component, connections, etc.) to build a distributed 
view of the network wide framework. 
3.2.3  Configurators 
Distributed configurators (as seen in figure 3) follow the same 
pattern as for local frameworks. They receive events about 
changing environmental conditions, select policies and then 
perform distributed reconfigurations. However, individual 
frameworks may have more than one configurator (e.g. there 
could be one on every node). Therefore, consensus protocols are 
used to ensure that all members of the framework agree on the 
action to perform. Our evaluation has so far focused on single 
configurators (see section 4), however, we are also investigating 
the introduction of selectable and replaceable consensus 
algorithms into our distributed frameworks. 
3.2.4  Quiescence 
For safe dynamic reconfiguration it is important to ensure that 
updates complete atomically and do not impact the integrity of the 
network. There are two parts to this: i) making the framework safe 
to adapt, i.e. placing it in a quiescent state, and ii) ensuring that 
the reconfiguration is complete and correct.  

In our current implementation, local framework instances 
maintain a readers/writers lock to place it into a quiescent state: 
any standard interface call or meta-inspect is a reader, any meta-
write is a writer. Hence, no reconfiguration can take place locally 
while a thread is executing in the framework. Currently our 
distributed frameworks use this capability; each local framework 
is placed into a quiescent state through a command propagated via 



the meta-group service. Once locally quiescent a notification is 
returned to the configurator. Upon the condition that all members 
are in a quiescent state then the reconfiguration continues. After 
reconfiguration, like with local frameworks (IAccept plug-in), the 
update can be checked through inspection of the meta-data to 
validate the integrity of component updates across multiple nodes. 
An invalid reconfiguration can be detected and repaired. 

The disadvantage of the above approach is that it may be too 
resource intensive, and may not scale suitably for large numbers 
of hosts. Therefore, we are investigating replaceable decentralised 
strategies for safely updating components. Like the reification and 
configuration approaches, we advocate that the quiescence 
strategy should also be selectable for the needs of an application. 
3.2.5  Constraints 
The distributed component framework model must be inherently 
more flexible than the local model, as there are many more 
constraints that disallow a single fixed model being utilised. 
These are described as follows: 

Resources. All nodes may not be equal; some nodes may 
have more resources than others, e.g. a controller or gateway 
node. Hence, some nodes may have the resources to make 
reconfiguration decisions and enforce them, and others may not. 
Additionally, participating in expensive reconfiguration protocols 
may drain the resources of some sensors (see 4.2). 

Adaptation styles. Frameworks should provide selectable 
styles of adaptation: e.g. centralised versus decentralised. One 
reconfiguration may be better suited to a centralised approach, 
e.g. to ensure consistency; minimize resource usage; whereas 
another may be suited by a decentralised approach. 

4.  EVALUATION 
To evaluate our approach we demonstrate the effectiveness of 
Gridkit in supporting a flood-monitoring sensor network,; 
exploring how adaptations are performed in the face of changing 
environmental conditions. We also measure the costs introduced 
by increased flexibility and the ability to dynamically adapt. 

4.1  Reconfiguration Case Study  
The scenario examines how to predict flooding in a river valley in 
the North-West of England. Hydrologists need to deploy sensors 
(such as depth and flow-rate sensors); and the data from these is 
fed into off-site flood prediction models. Figure 5 illustrates the 
deployed sensor network. The sensors are placed at locations 
along the river; depending on the distances between sensors, 
different networks are used to communicate e.g. Bluetooth and 
802.11b for shorter distances, GPRS for longer communication. 
The sensor nodes employ the Gumstix hardware platform, 
configured with multiple network interfaces (i.e. Bluetooth, 
GPRS, and 802.11b); they have an Intel XScale 400MHz CPU, 64 
Mb of RAM and 16Mb of flash memory. These devices support a 
Linux kernel and run the Java 1.4.1 virtual machine. More detail 
about the scenario is in [8]. 

Off-site data dissemination is supported by the use of 
spanning tree-based overlays. These are commonly used in 
wireless sensor networks to disseminate data from a large number 
of sensors to a small number of logging or bridging nodes that 
form the ‘root’ of the tree. Prime examples of spanning trees are 
Shortest Path (SP) and Fewest Hop (FH) trees. FH trees are 
optimized to maintain a minimum number of hops between each 
node and the root. They minimise the data loss that occurs due to 
node failure, but are suboptimal with respect to power 

consumption. SP trees, on the other hand, are optimised to 
maintain a minimum distance in edge weights from each node to 
the root. As a result, they tend to consume less power than FH 
trees, but are more vulnerable to node failure. Examples of the 
two trees are shown in figure 6. 

 

Site 1

Site 2 Site 3
Site 4

GPRS
802.11 802.11

GPRS
 

 
Figure 5: Sensor network to monitor river valley flooding 

 

 
Figure 6: Spanning tree overlays for sensor networks 

 
Our middleware is customized as described in section 2. The tree 
root (gateway) node’s interaction type is configured as the 
subscriber role to receive events of interest (i.e. those describing 
flooding information). The remaining nodes configure the 
interaction type to publish event information towards the 
subscriber. These nodes are all underpinned by a spanning tree 
overlay framework, which ensures that events are successfully 
routed to the sink of the network. The middleware also reacts to 
environmental changes. We now describe in detail the steps 
involved in one example reconfiguration scenario. 

 
State 1 – Normal Conditions 
When the sensor network is operating under normal conditions, 
the middleware is customized to be underpinned by an overlay 
providing a shortest path tree connected using a Bluetooth 
network. Hence, it is customized to save power. 
 
State 2 – Flooding predicted 
The scenario uses (locally computed) flood prediction models to 
determine when the valley will flood. These models generate an 
event stating that flooding is about to happen. Hence, the network 
adapts itself to become less vulnerable to node failure. The nodes 
configure themselves into a new topology – a FH tree. 
 
Reconfiguration from state 1 to state 2 
Reconfiguration is limited to the overlay framework only; hence, 
we deploy a distributed overlay framework consisting of local 
overlay framework instances. We illustrate the reconfiguration of 
the distributed framework in figure 7. The implementation of a 
spanning tree consists of three components in the local component 



framework instance. The control component manages the 
topology i.e. how this node is connected to other nodes in the tree. 
The forwarder component routes messages towards the root of the 
tree. The state component stores local data such as neighbour 
nodes. The implementation of the shortest-path tree and fewest 
hop tree differ only in the control component—i.e. nodes are 
connected to neighbours based on different metrics. Therefore, to 
reconfigure the overlay from a shortest path tree to a fewest hop 
tree the control component must be reconfigured on each node. 

The case study is small scale, with limited node mobility; 
therefore, the distributed overlay framework consists of a single 
configurator that stores the meta-data for the framework, reacts to 
the flooding event produced by the prediction models, and enacts 
the reconfiguration on each of the nodes to ensure that they are 
safely and accurately updated.  

 

 
 

Figure 7: Reconfiguring the control component across 3 hosts 
For space reasons, we illustrate only a single reconfiguration 

example. However, the distributed framework approach can be 
applied more generally. We believe it will support 
reconfigurations for alternative co-operating middleware 
functionality. For example, alternative overlay reconfigurations: 
changing the routing strategy by replacing the forwarder 
components, or increasing the dependability of the overlay by 
inserting new nodes into the framework, or replacing the repair 
algorithms. Similarly, it can be applied in different application 
domains such as multimedia and mobile e.g. the communication 
binding can switch across all hosts from streaming to text 
messaging when there is a reduction in available bandwidth.  

4.2  Quantitative Costs 
Our approach introduces complexity and autonomous behaviour 
into the realm of sensor middleware. Here we examine some of 
the costs that these bring. Gridkit is currently implemented using 
Java, and hence requires a virtual machine to be available on each 
sensor node (that said, Gridkit itself is language independent, and 
the approach could easily be replicated using different language 
implementations). In this section, we examine the memory 
costs—i.e. how much memory footprint is required to run the 
Gridkit middleware. This is a function of the Java class size. We 
next examine the dynamic memory footprint of the cost of 
creating dynamic frameworks: i.e. how much run-time memory.   

4.2.1 Memory Footprint Cost of Middleware 
Table 1 describes the static memory footprint cost (i.e. size on 
disk) of the jar files that make up the core elements of the sensor 
middleware. These show that a reasonable amount of memory 
space is required for each customised personality e.g. the 

publisher role in a distributed framework totals 236 Kbytes; this 
easily fits onto the Gumstix, however is too large for minimal 
sensors e.g. Motes. This is constrained by the use of Java, and we 
are investigating C based approaches to minimise these values. 

4.2.2  Dynamic Memory Cost of Meta-Data 
Figure 8 illustrates the expense of maintaining meta-data in the 
network. This is a measure of the size of data stored in a node’s 
system memory during the operation of the distributed framework 
that manages the spanning tree overlay (figure 7). The graph 
shows that meta-data held about local frameworks (3 connected 
components) remains constant irrespective of the number of nodes 
in the network. The basic distributed meta-data (figure 4a) 
increases a small constant amount for each new node in the 
network (approx. 144 bytes). However, the richer meta-data 
(figure 4b) sees a greater constant increase in system memory use 
due to the storage of component meta-information. However, in 
the scenario, only the root nodes maintain basic and richer meta-
data; the cost is not spread across the network. 

Table 1: Static Memory Footprints of sensor middleware 

Component Static Memory (Kbytes) 

OpenCOM runtime 76 

Gridkit Core Middleware 40 

Group-based Meta-Architecture 52 

Publisher Role 24 

Subscriber Role  36 

Spanning Tree Overlay 44 

 

 
Figure 8: Dynamic Memory Costs of meta-data 

5.  Related Work 
There are a number of existing sensor middlewares, some of 
which were described in the introduction. These are important 
solutions in identifying the key characteristics required by sensor 
middleware, namely easy to use abstractions, suitable routing 
strategies, and resource management policies. However, none of 
these pieces of work considers dynamic reconfiguration and 
customisability to the same degree as Gridkit. 

Outside the domain of sensor networks there are a set of 
technologies related to distributed reconfiguration. For example, 
k-Components [5] offers a decentralised agent-based approach; 



i.e. each node makes local decisions about adaptation, until a 
global consensus is reached. Gridkit supports both centralised and 
decentralised approaches, and in that manner can be tailored to 
resource-constrained domains such as sensor networks. NecoMan 
[10] offers an alternative approach to dynamic reconfiguration. It 
supports safe, co-ordinated updates of distributed services, 
typically related to network protocols. It has not yet been applied 
to multiple reconfiguration domains to illustrate its flexibility; 
however, it presents many interesting ideas that could be applied 
within our frameworks. Ensemble [16] is a micro-protocol stack 
framework that is able to adapt its configuration dynamically; 
however, the reconfiguration mechanism is closely coupled to the 
micro-protocol implementation, and isn’t as re-usable as Gridkit. 

6.  Conclusions and Future Work 
In this paper, we have proposed the consideration of new 
dimensions in sensor middleware i.e. it should be customizable 
for the application environment, and also dynamically 
reconfigurable to change the behaviour of the sensor network. We 
have demonstrated how the flexible Gridkit middleware platform 
can be tailored specifically to the sensor domain. We have 
provided a component-based programming model for the 
development of sensor middleware and applications. In addition, 
we have introduced the concept of reflective distributed 
frameworks to manage the reconfiguration of software 
components across the sensor network. The approach was 
evaluated in a real-world sensor application, and shown that 
although the added complexity adds a cost to the performance this 
is not confining. Finally, we identify that this work is highly 
complementary to existing sensor middleware research e.g. ad-
hoc message routing and power management.  

There are a number of interesting future areas of research 
inspired by this work. Firstly, the creation of higher-level 
declarative languages that can be used by both middleware and 
application developers to describe reconfiguration actions on the 
sensor network, and also deal with potential conflicts that may 
arise from multiple policies. Secondly, the introduction of 
security measures to the distributed framework to ensure only 
authentic nodes can join a framework, and only members of the 
framework can make reconfigurations. Finally, the investigation 
of resource management policies (local and global); these will be 
used to adapt the middleware behaviour to conserve resources 
such as network bandwidth and battery power. 
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