
Deep Middleware for the Divergent Grid

Paul Grace, Geoff Coulson, Gordon S. Blair, and Barry Porter

Computing Department, Lancaster University, Lancaster, UK
{gracep, geoff, gordon, porterbf}@comp.lancs.ac.uk

Abstract. Next-generation Grid applications will be highly heteroge-
neous in nature, will run on many types of computer and device, will
operate within and across many heterogeneous network types, and must
be explicitly configurable and runtime reconfigurable. We refer to this
future Grid environment as the “divergent Grid”. In this paper, we pro-
pose a “deep middleware” approach to meeting key requirements of the
divergent Grid. Deep middleware reaches down into the network to pro-
vide highly flexible network support that underpins a rich, extensible
and reconfigurable set of application-level “interaction paradigms” (such
as publish-subscribe, multicast, tuple spaces etc.). In our Gridkit mid-
dleware platform, these facilities are encapsulated in two key component
frameworks: the interaction framework and the overlay framework, which
are the subject of this paper. The paper also evaluates the two frame-
works in terms of their configurability (e.g. ability to be profiled for
different device types) and reconfigurability (e.g. to self-optimise as the
environment changes).

1 Introduction

As Grid computing continues to evolve, there is an accelerating trend towards di-
versity both in terms of application domains and, crucially, in terms of the un-
derlying networked infrastructures in use. For example, with the emergence of the
“pervasive Grid” [11], we can envisage a spectrum ranging from very large cluster
computers interconnected with high-speed networks through to tiny embedded de-
vices interconnected by often intermittent and low bandwidth wireless networks.

A more detailed analysis of heterogeneity at the infrastructure level of the
Grid reveals the following:

– At the network level. Beginning with dedicated intra-cluster networking, the
range of network types in use has grown to include: high-speed local net-
works; lower-speed wide-area networks; infrastructure-based wireless net-
works; adhoc wireless networks (themselves ranging from relatively static
to highly dynamic configurations); and specialised sensor networks.

– At the middleware level. Beginning with basic point-to-point interactions
(e.g. SOAP messaging and RPC), the range of middleware-level communi-
cations services in use is expanding to encompass a wide range of “interac-
tion paradigms” such as: reliable and unreliable multicast; workflow; media
streaming; publish-subscribe; generative communication; and peer-to-peer
based resource location or file sharing.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 336–355, 2005.
c© IFIP International Federation for Information Processing 2005

Deep Middleware for the Divergent Grid 337

We characterise these trends as the divergent Grid. As a more concrete il-
lustration of the divergent Grid, consider the following scenario which is cur-
rently being realised at Lancaster University [15]: A river and estuary are in-
strumented with a range of sensor devices e.g. to monitor temperature, water
levels, flow rates, pollution levels, coastal erosion etc. Some of these devices
(e.g. fixed sensors in tidal defence walls) are networked using standard wired
technologies such as Ethernet, while others employ various wireless technologies
(e.g. IEEE 802.15.4 or 802.11 radios; or longwave radios for underwater use).
Using this infrastructure, scientists in widely-dispersed locations selectively store
sensor data for future analysis, integrate and process live sensor data on their
workstations, cooperatively visualise this data in real-time (supported by a video
conferencing system), and use both stored and live data to computationally steer
long running environmental simulations on computational clusters.

Note that this divergent Grid scenario clearly involves highly heterogeneous
device and networking technologies, and also that it demands a wide range
of interaction paradigms (e.g. ad-hoc multicast for sensor data dissemination,
publish-subscribe for sensor data collection, multicast and streaming for collab-
oration, and secure channels for database access). Dealing with such extreme het-
erogeneity is a fundamental challenge for future Grid middleware, and one that
is demonstrably not addressed by existing platforms (as is also argued in [7]). In
this paper, we propose a platform called Gridkit that tries to address these defi-
ciencies. Gridkit adopts and builds on our previous approach to the development
of reflective middleware [4]: it utilises components, reflection and component
frameworks to yield a configurable, reconfigurable and evolvable architecture.

But the most novel contribution of Gridkit is that it explores the notion
of deep middleware in which the middleware platform reaches down into the
(heterogeneous) network to provide flexible communications services with which
to support a range of distributed interaction paradigms at the application level.
Deep middleware can either build on support from an active or programmable
network, or can leverage the notion of overlay networks [12]. In our previous
work [9] we have explored the former; in the present work we explore an overlay-
based approach which has the key advantage that it can be applied in ‘black
box’ network environments.

In outline, Gridkit has at its heart two layered component frameworks. The
higher layer is an interaction framework that takes plug-in interaction paradigms;
the lower layer is an overlay framework which takes plug-in overlay implementa-
tions. See figure 1. In previous work [15], we have provided an outline of the wider
Gridkit architecture which supports an API based on web-services and also in-

Interaction Framework

Overlay Framework

Fig. 1. The overall architecture

338 P. Grace et al.

cludes frameworks for Grid-based resource discovery, service discovery, resource
management, and security. In this paper we focus on the ‘heart’ of Gridkit: the
above-mentioned interaction and overlay frameworks. In particular, we demon-
strate how the deep middleware approach can support a rich, extensible and re-
configurable set of application-level interaction paradigms in and across a variety
of network types and on a variety of devices.

The remainder of the paper is structured as follows. Sections 2 and 3 respec-
tively discuss the interaction and overlay frameworks. Section 4 then presents a
study of the configurability of the two frameworks (how they can be instanti-
ated on different device types) and their reconfigurability. The reconfigurability
study focuses especially on self-managing functionality offered by the overlay
framework. Following this, we discuss related work in section 5 and present our
conclusions and plans for future work in section 6.

2 The Interaction Framework

2.1 Motivation

Grid Middleware that offers only a single interaction paradigm (e.g. RPC) cannot
cope with the diversity of application requirements needed by next-generation
Grid applications [7]. This is illustrated clearly in the environmental informatics
scenario of section 1 which, as explained, involves at least publish-subscribe,
multicast-based group interaction and media streaming.

One possible solution to this problem is to employ separate middleware im-
plementations for each interaction paradigm required. This solution is implicit
in the piece-meal nature of current Grid middleware: e.g. SOAP for messaging,
JMS for publish-subscribe, GridFTP for data streaming, and OGSA-DAI for
database access. However, this ad-hoc approach has numerous problems:

– being responsible for middleware composition and integration adds consid-
erable complexity to the load on the application developer;

– it is unlikely that all implementations of the same interaction paradigm will
support the same programming model, programming language and operation
syntax, which further increases the cognitive load on the developer;

– the middleware infrastructure becomes redundant and heavyweight due to
potentially common functionality being duplicated across multiple imple-
mentations (e.g. network transport, resource management, and security);

– individual interaction paradigm implementations may only operate in certain
environments and/or under certain network conditions (e.g. different publish
subscribe implementations are typically used for infrastructure-based and
for ad-hoc networks) this again leads to redundant deployment, this time of
individual interaction paradigms.

2.2 Overview of the Interaction Framework

To address these problems, Gridkit’s interaction framework provides a common
environment for an extensible set of so-called pluggable interaction paradigms,
or PIPs.

Deep Middleware for the Divergent Grid 339

The design of the framework is guided by the following principles:

1. the selection and use of PIPs by applications should be straightforward;
2. the programming model of each PIP should be independent of how it is

implemented over different (overlay) network types and conditions;
3. the configuration of PIPs, including their underlying overlay support, should

be managed automatically based on an (optional) declarative specification
of desired behaviour;

4. the configuration of PIPs should also be informed by the currently available
network infrastructure and environmental conditions.

IInntteerraaccttiioonn
FFrraammeewwoorrkk

RPC

IRPC

Streaming

IStreaming

Group

IGroup

Dynamic introduction of
plug-in components

implementing interaction
patterns

Multiple
dependencies

IPublish

Publish

NNeettwwoorrkk TTrraannssppoorrtt

OOvveerrllaayy FFrraammeewwoorrkk

IConnect

Fig. 2. The interaction framework

The overall architecture and context of the interaction framework is illustrated
in figure 2. Separating the interaction framework from the overlay framework has
the effect of promoting the reuse of overlays and thus conserving resources i.e. dif-
ferent interactions may re-use overlay configurations that are already in place (for
example, a topic-based publish-subscribe PIP and a reliable multicast PIP might
both share a multicast tree overlay - see section 3.2). Additionally, figure 2 shows
that a network transport framework is plugged into the overlay network frame-
work; this provides components (e.g. TCP, UDP etc.) that implement communi-
cations services that are used directly by overlays, and that are used directly by
PIPs that do not require sophisticated overlay support (e.g. RPC).

The interaction framework does not impose any specific structure on its plug-
ins except that it requires that each plug-in is encapsulated as a single compo-
nent. However, as our OpenCOM v2 component model [8] supports composite
components, this imposes no real constraint.

2.3 Interaction Framework APIs

In line with principles 1 and 2 set out above, we have made every effort to simplify
the API of the interaction framework. General experience in the development of
reflective middleware has taught us that highly configurable systems are often
a two edged sword: configurability is certainly a good thing, but too often its

340 P. Grace et al.

benefits are outweighed by the inconvenience and complexity of having to write
many lines of baroque code to achieve a desired configuration. In many cases, this
complexity is so great that developers are likely to ignore the available flexibility
and use only a small number of default configurations. This is especially relevant
in the case of the interaction framework as (unlike the overlay framework) it is
generally used directly by application developers.

Because of the variety of interaction paradigms and the need to support
future extensibility, it is unrealistic to define universal, fixed, interfaces to PIPs.
Instead, we adopt an approach to API provision that relies on the definition
of an (extensible) set of generic APIs. The expectation is that each generic
API will be exported by a potentially large family of underlying PIPs. In cases
where a PIP requires a modification of the generic API closest to its needs,
the framework recommends that interface inheritance be used wherever possible
to avoid a proliferation of top-level APIs. Avoiding a proliferation of top-level
APIs is crucial in giving applications some level of stability and consistency,
and in enabling them to accumulate transferable knowledge. As an example, a
new group communication PIP that addresses message ordering issues could not
directly use a group API that is silent on message ordering. However, the PIP
developer should extend this generic API rather than add an entirely new one.

In addition to providing recommendations for the structuring of PIP APIs,
we have attempted to simplify the way in which applications select and configure
PIPs. Our approach here employs a notion of so-called binding contracts that is
in turn inspired by the idea of ‘trading’ in RM-ODP [23]. More specifically, PIP
interfaces have attached to them sets of name-value pairs that embody PIP-
specific information such as the name of the PIP, its purpose, constraints on
its use, and the QoS it provides. Correspondingly, the receptacles (a receptacle
is a ‘required’ interface [8]) of application components that want to use PIPs
have predicates attached to them whose terms refer to the name-value pairs
attached to potentially-matching PIP interfaces. The binding contract elements
(i.e. name-value pairs and predicates) are attached to receptacles and interfaces
using native facilities of our component model (i.e. the ‘interface’ meta-model
as described in [3]).

Based on binding contracts, we provide a simple generic API to the inter-
action framework of the form connect(receptacle) to which the potential user
of a PIP submits its receptacle. Given this, the interaction framework selects,
instantiates, and configures a PIP instance based on the following information:

– the set of available PIPs that are currently registered with the framework;
– the predicates attached to the offered receptacle;
– the advice of a context engine [5] which supports additional name-value pairs,

the value of which varies dynamically according to the context of the host
machine (e.g. battery life, network connectivity etc.)

During the process of finding a suitable PIP, the predicate attached to the
user’s receptacle must evaluate to true when bound to the name-value pairs from
both the selected PIP interface and the context engine. Section 4 has specific
examples of the use of binding contracts and related machinery.

Deep Middleware for the Divergent Grid 341

Additionally, the interaction framework (optionally) supports dynamic mon-
itoring of binding contracts. Using this facility, any party to the binding contract
(including the context engine) can force a re-evaluation of the contract by al-
tering their respective ‘side’ of the contract. For example, the user can drive
reconfiguration of a PIP (e.g. by reconfiguring its underlying overlay stack; see
section 3) by altering the predicates attached to its receptacle. To detect such
changes, the component model’s ‘interception’ meta-model [3] is used to attach
a ‘dynamic contract evaluator’ to the receptacle-interface binding. This is exe-
cuted each time a call is made across the binding, and raises an exception if it
finds the binding contract to be no longer valid. This exception can either be
handled by the user or by the framework itself, e.g., to delete the PIP instance
or to attempt to reconfigure it. As an example, the context engine might change
a name-value pair to reflect the fact that a live Ethernet MAC layer no longer
exists, and the framework might, on that basis, change the underlying overlay
from IP-based flooding to an ad-hoc network based flooding. Again, see section 4
for examples and more detail.

3 The Overlay Framework

3.1 Background on Overlays

Overlay networks are virtual communication structures that are logically “laid
over” an underlying physical network such as the Internet or a wireless ad-hoc
networking environment. They are typically implemented by deploying appro-
priate application-level routing functionality at strategic places in the network
(in principle both at the network edges and in the core). Overlays have to date
mainly been motivated by two concerns: i) to alleviate the effects of slow or spo-
radic deployment of new services in the Internet (e.g. application-level multicast);
and ii) to directly provide application-level functionality that is out-of-scope for
the underlying network (e.g. large-scale peer-to-peer file sharing). Examples of
overlay types are: reliable multicast overlays such as SRM; content dissemina-
tion networks; unstructured peer-to- peer overlays such as Gnutella; structured
dynamic hashtable (DHT)-based peer-to-peer overlays such as Chord; resilient
overlay networks (RONs); gossip overlays; and the wide variety of routing over-
lays used in ad-hoc or wireless sensor networks. See [15] for a survey.

3.2 Overview of the Overlay Framework

Gridkit’s overlay framework supports the design, deployment and management
of plug-in overlay networks. In terms of design, the framework mandates that
per-host overlay plug-ins are structured in terms of three standard elements
(components). These (see figure 3) are: i) a control component that cooperates
with its peers on other hosts to build and maintain a virtual network topology,
ii) a forwarding component that routes messages over the virtual topology, and
iii) a state component that encapsulates key state such as nearest neighbours.
This tri-partite structure provides a useful pattern for developers, promotes the

342 P. Grace et al.

control stateforwarding

interfaces

receptacles

control stateforwarding

interfaces

receptacles

Fig. 3. Structure of an overlay plug-in

dissemination of experience and expertise in overlay development, and facilitates
deployment and management. Note also in figure 3 that each of the 3 elements
exposes an interface to the higher layer and a receptacle to the lower layer.

In terms of deployment, the overlay framework allows one to dynamically
instantiate new overlays in a straightforward and lightweight manner. This is
supported in a recursive fashion by using overlays to deploy overlays (PIPs are
also deployed in this way). For example, a flooding-based overlay (e.g. Gnutella
[14]) can be used to disseminate a message that (a filtered subset of) receiving
hosts act upon by deploying a node of a new overlay of some desired type (e.g.
an application-level multicast overlay). This is achieved by employing a stack
structure for overlay implementations, and adopting an associated message han-
dling regime that is inspired by the Ensemble communications framework [29].
In brief, the forwarding elements of overlays are organised such that when an
incoming message is not recognised, it is passed up to the forwarding component
of the overlay above. Given this arrangement, one can place a ‘dummy’ overlay
at the top of the overlay stack that responds to deployment request messages.
Such requests will necessarily reach the top of the stack as they will not have
been recognised by any of the lower forwarding components.

Apart from its use in deployment, the general notion of stacking overlays is
a powerful one, and there are numerous cases in which one overlay can usefully
be employed as a substrate for another. For example, one could layer a keyword
search overlay such as Gnutella over a DHT-based network such as Chord (as
DHT networks do not support keyword search). Or, one could layer a content
dissemination overlay such as TBCP [21] over a resilient overlay such as RON [2]
to enhance dependability. All such scenarios can be achieved very easily using
the overlay framework’s stacking structure.

As well as stacking whole overlays, the overlay framework also supports par-
tial stacking in which the control, forwarding, and state elements can be sep-
arately stacked. For example, we have designed a variant of Gnutella [17] that
builds a more structured network than the completely unstructured topology
constructed by standard Gnutella. This variant can be deployed simply as a
<control, state> pair, and an existing standard Gnutella forwarding component
in the layer below can be used directly. Another example of partial stacking could
be the stacking of a multicast overlay over a DHT-based overlay. Here, the multi-
cast overlay would only need to provide a forwarding component, as the control
and state components of the underlying DHT overlay could be used directly.

Deep Middleware for the Divergent Grid 343

MCast streaming keywork search

Chord key based routing probabilistic multicast

Fig. 4. Example configuration of the overlay framework

Partial stacking not only saves developer effort it also potentially conserves re-
sources, as functionality common to a set of stacked overlays can be reused, thus
saving end-system resources and potentially reducing network traffic.

Figure 4 illustrates an example configuration of the overlay framework that
involves two multi-layered overlay instantiations: first, a group overlay and
streaming overlay are both supported by an instance of the Chord DHT over-
lay; second, a keyword search overlay is supported by a probabilistic multicast
overlay. This demonstrates how multiple overlay networks, both related and
unrelated, can co-exist within a single middleware platform instance; and how
overlays can be configured on top of other overlays to construct higher-level,
more application-specific semantics.

As well as stacking, the overlay framework also promotes horizontal cooper-
ation between different overlays. For example, as explored in section 4, a gossip-
based overlay can be used to gossip about crashed nodes in a different overlay,
and thus be used to provide a general failure detection service for other over-
lays. Similarly, an overlay that provides a dependability service for the nodes of
other overlays could exploit a third overlay to search for suitable hosts on which
overlay nodes could be redundantly checkpointed. As a third example, separate
infrastructure-based and ad-hoc-based multicast overlays could cooperate side-
by-side to underpin a publish subscribe PIP that must simultaneously operate
in both network environments.

Finally, in terms of the management of deployed overlays, the overlay frame-
work employs plug-in ‘component configurators’ [19] that builds on another of
the component model’s reflective meta-models - this time the ‘architecture’ meta-
model [3]. But in addition, some management functions can be carried out by
overlays themselves. Within a single overlay, it is the responsibility of the control
part of the implementation to manage, maintain, and repair the overlay topol-
ogy. But it is also possible to use specialised overlays to manage other overlays.
Examples of this relating to failure detection and dependability have already
been given above and are pursued in section 4.

3.3 Overlay Framework APIs

The general approach of interfacing users to the overlay framework is identical to
that adopted by the interaction framework (see section 2.3): viz. the convention
of an extensible set of generic APIs that can each support a family of related

344 P. Grace et al.

Table 1. Generic overlay APIs

DHT Cast
Control join(networkId) join(grpId)

leave(networkId) leave(grpId)
Forwarding put (key, data) multicast(msg, grpId)

remove (key) anycast(msg, grpId)
value = get (key)

State nodes = neighbours() nodes = neighbours()
addneighbour(node) addneighbour(node)

underlying overlays. In addition, the framework uses the ‘connect()’ API and
binding contracts to select, configure and dynamically monitor overlays.

Our current set of generic APIs, which are taken almost directly from [10]
except that they are factored into control, forwarding and state categories, is
shown in table 1. This shows two generic APIs for DHT-based and for cast-
based overlays respectively. Following Dabek et al’s experience we have found
that these generic APIs can be used by a large family of overlay plug-ins. For
example, the generic DHT API can give access to Chord, Pastry, Tapestry etc.,
and the cast API can give access to multicast overlays, ad-hoc routing protocols
etc. The complete set of overlays that we have implemented is listed in section 6.

Finally, note that in the case of the overlay framework, the ‘connect()’ process
naturally recurses to drive the instantiation of stacks of overlays: i.e., if the initial
connect() call instantiates a new overlay plug-in, the instantiation of this might
in turn drive the instantiation of another below it. And so on.

4 Case Studies of Configuration and Reconfiguration

4.1 Configuration

In this section we demonstrate the configurability of Gridkit on different com-
puter and device types, showing how different PIPs can be automatically config-
ured and underpinned with overlay configurations in a way that is appropriate to
different environmental conditions. In particular, we discuss scenarios in which
we configure two different types of PIP on two different types of device: a PC and
a PDA. We also concretise the discussion on binding contracts in section 2.3 by
giving examples of the use of binding contracts and their associated machinery.

Consider a Gridkit installation that is described by table 2. This shows the
plug-ins that are currently registered with the interaction and overlay frame-
works, and the context on each of the two device types we are considering. It
also shows the current set of name-value pairs for the plug-ins and the per-device
context. RelMsg means reliable messaging; GrpMem means group membership
services; and Net means network type (i.e. fixed or ad-hoc).

Given this installation, consider the processing of a request on the interaction
framework of the form connect(publish-receptacle) for an IPublish generic API

Deep Middleware for the Divergent Grid 345

Table 2. An example Gridkit installation

Framework Generic API Item Name-value pairs
Interaction IPublish Publish RelMes: F

IGroup Group1 RelMes: F; GrpMem: T
Group2 RelMes: F; GrpMem: F

Overlay IGroupMessage ALM RelMes: F; Net: fixed
IGroupMessage ProbMcast RelMes: F; Net: adhoc
IGroupMembers Gossip RelMes: F; Net: fixed; Net:adhoc

Context N/A PC Net: fixed
PDA Net: adhoc

where there is a predicate of the form RelMes=F attached to publish-receptacle.
The steps involved in processing this request are as follows (please refer to
figure 5):

– Step 1: the connect(publish-receptacle) call is issued by the application on
the interaction framework as already described.

– Step 2: the interaction framework picks a PIP that exports the specified
generic API, and retrieves from the context engine the set of contextual
name-value pairs that are relevant to the type of this PIP - in this case it
picks Publish and retrieves Net: fixed if running on a PC, or Net: adhoc if
running on a PDA (the name-value pairs deemed relevant for a given PIP
are designated by the PIP developer when the PIP is first registered with
the framework).

– Step 3: a pattern-matching algorithm (similar to that used in [5]) is used to
select a per-PIP ‘configuration script’ on the basis of the receptacle predicate
and the name-value pairs from the context engine and from candidate PIPs
(again, this configuration script is provided when the PIP is first registered).

– Step 4: the script instantiates the PIP and then decides on a suitable over-
lay type to underpin the PIP; in this case it will pick the IGroupMessage
generic API underpinned by an Application Level Multicast (ALM) imple-
mentation [21] on the PC because ALM’s RelMes and Net values satisfy
both the publish-receptacle’s predicate of RelMes=F and the Net value pro-
vided by the context engine; it will, however, be underpinned by ProbMcast
on the PDA due to the fact that this exports Net: adhoc which matches the
Net value exported by the context engine; the script also derives a suitable
predicate for the overlay receptacle alm-receptacle (in this case the predicate
will be RelMes: F), and attaches this to the alm-receptacle.

– Step 5: the script issues a connect(alm-receptacle) call on the overlay frame-
work.

From this point on, steps 6, 7 and 8 are analogous to the steps already
described above except that they are executed by the overlay framework rather
than the interaction framework. The final results are shown in figure 6. Note
that the connect() process may be carried out multiple times by the overlay
framework in the case of a request that indicates a stack of overlays.

346 P. Grace et al.

Fig. 5. Steps involved in processing a connect() request

PDA Configuration

IPublish

Interaction

PPuubblliisshh

IGroupMessage
RelMes=false

PPrroobb.. MMCCaasstt
Overlay

IPublish

Interaction

PPuubblliisshh

AALLMM
Overlay

IGroupMessage
RelMes=false

PC Configuration

Fig. 6. Applying publish configurations on the PC and the PDA

Now consider a consider a request on the interaction framework for a Group
PIP with a receptacle predicate of RelMes=F and GrpMem=T. A similar process
to the above will be carried out with the Group1 PIP being selected (because of
the specification of GrpMem=T), and underpinned by ALM and Gossip over-
lays on the PC, and ProbMcast and Gossip overlays on the PDA (again due to
contextual differences). The Gossip overlay is used to gossip about group mem-
bership (as required by the GrpMem=T predicate). The outcomes are shown in
figure 7.

Interaction

IGroup

GGrroouupp

PPrroobb.. MMCCaasstt

PDA Configuration

Overlay

IGroupMessage
RelMes=false

IGroupMembers
GrpMem=true

GGoossssiipp

Interaction

IGroup

GGrroouupp

AALLMM

PC Configuration

Overlay

IGroupMessage
RelMes=false

IGroupMembers
GrpMem=true

GGoossssiipp

Fig. 7. Applying group configurations on the PC and PDA

Deep Middleware for the Divergent Grid 347

Note that the above processes rely on an ‘ontology’ of names (RelMes, Grp-
Mem etc) which are commonly understood across the two frameworks and the
context engine. Although it leads to a degree of ‘coupling’ between the frame-
works, this is a necessary evil in realising automatic configuration of PIPs/
overlays. In general it is not as much of a problem as it might initially seem, as
a natural convention emerges under which PIP developers build on a canonical
set of names used by the lower level frameworks.

Table 3. Memory footprint sizes of the four configurations

Configuration Static Memory Configuration
Footprint (KBytes) Time (ms)

Publish-Subscribe with ALM (PC) 171 616
Pub-Subscribe with ProbMcast (PDA) 223 3012
Group with ALM (PC) 221 591
Group with ProbMcast (PDA) 276 3776

Overhead Evaluation. For completeness we briefly present the times taken
to generate the above configurations and the memory footprint incurred. These
are presented in table 3. The experiments were carried out on the following
platforms. The PC was a Dell Optiplex workstation with a 3.0 GHz Pentium
4 processor and 1Gbyte of RAM with a fixed network connection and running
Windows XP. The PDA was a Compaq iPaq H360 2002 with a 233Mhz Stron-
gARM processor and 32Mbytes of RAM with an ad-hoc network connection and
running Windows Pocket PC. Details of the implementation environment of the
frameworks are given in section 6.

4.2 Reconfiguration

We now present a case study that demonstrates one way in which dynamic
reconfiguration of the overlay framework can benefit the overall performance
of Gridkit. As previously described, it is possible to simultaneously support
multiple overlays in a single overlay framework configuration. However, there is a
potential source of redundancy in multi-overlay configurations in that individual
overlays often provide (in their ‘control’ elements) their own proprietary network
monitoring and repair mechanisms which may have overlapping functionality. In
this case study, we investigate the potential for dynamically replacing individual
overlay monitoring mechanisms with a generic mechanism that can be shared
across overlays, thus reducing network messaging overhead.

We consider two overlays, each of which we have re-implemented to fit the
requirements of the overlay framework: Chord [28] is a DHT-based overlay that
performs key-based routing, and Scribe [6] is a tree-based overlay that performs
multicast/anycast routing of messages under different ‘topics’ atop a keybased
routing mechanism (e.g. Chord). In terms of overlay maintenance, Chord nodes

348 P. Grace et al.

continuously monitor and repair their network structure by sending control mes-
sages to their logical neighbours. Similarly, Scribe nodes periodically send ‘heart-
beats’ to their child nodes, and receive heartbeats from their parents. A detected
change in either network (due to the arrival of new nodes or node failures) trig-
gers the execution of a proprietary repair algorithm.

The architecture of our Chord and Scribe implementations is illustrated in
figure 8. It can first be seen that Scribe is stacked on top of Chord in the manner
discussed in section 3.2. The figure also shows two versions of the control ele-
ments of each overlay: an active and a passive version. In each case, the active
version encapsulates the overlay’s proprietary monitoring and repair algorithm
(as described above), whereas in the passive versions we have removed the mon-
itoring aspect of the algorithm and left only the repair aspect. The intention
is that the monitoring element, in each case, will be provided by a common
monitoring service.

Potential
Reconfigurations

Scribe
Active
Control

Scribe
Forward

Scribe
State

Scribe

Overlay Framework

Chord

Chord
State

Chord
Forward

Chord
Active
Control

Chord
Passive
Control

Scribe
Passive
Control

Fig. 8. Chord and Scribe overlays with alternative control elements

Our implementation of this common monitoring service (see figure 9) is based
on a gossip failure detection scheme proposed by [31]. The basic operation of
each gossip overlay node is to ‘gossip’ a given message to a specified random
subset (Kgossip) of its neighbours. On top of this overlay, we have implemented
a special-purpose monitoring overlay, the nodes of which periodically gossip a
heartbeat counter indicating their ‘alive’ status to local neighbours. Each node
monitors heartbeat activity, and if it hasn’t received a heartbeat update from a
given node in a given time period, it declares the node ‘dead’.

In operation, therefore, the intention is that the monitoring and gossip over-
lays are used to send messages across all nodes in both the Scribe and Chord
overlays about fails and joins, and this information is used to replace Scribe’s and
Chord’s proprietary monitoring mechanisms and to drive their passive control
elements.

To confirm the benefits (in terms of overall network overhead) of reconfig-
uring from an active to a passive control strategy, we set up an experimental
configuration that involved 10 instances of the overlay framework running on
5 workstations. One of these workstations, designated as the test host, was set
up to measure the total number of failure detection related control messages
originating from that host.

Deep Middleware for the Divergent Grid 349

Scribe
Passive
Control

Scribe
Forward

Scribe
State

Scribe
Gossip Failure
Detection

Gossip
State

 IDeliver
Gossip

FD

Gossip
Forward

Gossip
Control

Overlay Framework

Chord

Chord
State

Chord
Forward

Chord
Passive
Control

Fig. 9. Configuration of overlay framework with gossip failure detection

0
2
4

6
8

10
12
14

16
18
20

0 20 40 60 80 100 120

Time (secs)

m
es

sa
g

es
/s

ec

T1T0

Fig. 10. Investigation of control message throughput in the overlay framework

We then configured the overlay framework to switch from an active to a
passive control strategy when a threshold rate of 11 messages/sec of measured
control messages was exceeded. Given this set up, we proceeded as follows (please
refer to figure 10): We first instantiated a Chord overlay on all the experimental
hosts; this produced a control message rate of approximately 10 messages/sec.
Then, after 35 seconds (time T0) we instantiated a two Scribe trees on top
of Chord (these were configured so that the nodes on the test host acted as
parent to three child nodes in one tree, and one in the other). The Scribe trees
produced an additional 8 messages/sec; so at this point the combined number
of control messages (18) exceeded the configured threshold (11) and forced the
following reconfiguration to occur: i) the gossip and failure detection overlays
were instantiated (with a heartbeat/monitoring period of 500ms and a Kgossip

parameter of 5 neighbours); ii) each active control component was replaced by
the corresponding passive version; and iii) the passive control components were
connected to the failure detection component. That is, framework configuration
changed, at time T1, from the view of figure 8 to the view of figure 9. Under
these conditions, the test host measured a message rate of approximately 10
messages/sec which is a significant reduction of the prior rate of 18. Note also
that this rate will remain constant no matter how many overlays share the failure
detection service.

350 P. Grace et al.

Finally, we measured the overhead of the active-to-passive transition, broken
down into discrete phases. It can be seen from table 4 that there was a total
overhead (downtime) of 1.7 seconds while the transition is taking place; during
this time any PIPs that are using the framework would be blocked. However,
this is an ‘out-of-band’ operation that occurs only once, and once completed
does not further impact the performance of the middleware.

Table 4. Time to reconfigure the overlay framework

Operation Time(ms)
Configure Gossip Failure Detection 547
Replace 2 active control components 94
Connect FD to running overlays (Java to C++ bridge) 1141
Total Time 1782

It is important to emphasise that this failure detection approach cannot be
applied under all circumstances. In particular, it is only applicable to overlays
that are ‘fully connected’ in the sense that it is possible to reach all nodes from
any given node. This property is required to be able to deploy the Gossip over-
lay according to the scheme outlined in section 3.2 on all nodes that require
monitoring. Also, it might not necessarily be the case that the Gossip approach
leads to overlays being repaired as quickly and/ or effectively as their propri-
etary mechanisms achieve. Nevertheless it is a clear illustrative example of the
potential benefits of ‘horizontally’ composing overlays which is facilitated by our
framework.

5 Related Work

We are not aware of any other work that is specifically addressing the provision
of integrated support for pluggable overlay networks or interaction paradigms in
Grid environments. However, there is a considerable amount of related work in
the various sub-areas.

In terms of Grid middleware, there are platforms, notably ICENI [13], that
support the notion of software components. However, these platforms, so far
as we are aware, support components only at the application level: there is
no infrastructure level componentisation. In terms of wider, non-Grid-specific,
middleware, there are many platforms that take a component-oriented approach
at the infrastructure level, and feature plug-ins to extend system functionality.
Among these are DynamicTAO [19], UIC [26], ExORB [25], Arctic Beans [1]
and RAPIDware [27]. However, none of these support the notion of pluggable
interaction paradigms or overlay networks.

There is, of course, considerable research in the narrower field of overlay
networks themselves; but this work is largely orthogonal to our focus: we are
interesting in wrapping and applying overlay technologies rather than in devel-
oping new ones. In terms of generic support platforms for overlays, researchers

Deep Middleware for the Divergent Grid 351

at the University of Toronto have developed a generic platform called iOver-
lays [20] that supports the implementation of overlays. Essentially, iOverlays is
a low-level software cross-connect that forwards messages according to a script
that embodies the semantics of a particular overlay. It is thus orthogonal to
our interests. Our work also differs in focusing more on co-existence of, and
cooperation across, multiple overlay instances which is required to simultane-
ously support multiple PIPs in the same application. Also in the field of generic
overlay support, [10] has presented APIs for common overlay services such as
distributed key-based routing, distributed hashtables, distributed object lookup
and multicast behaviour. Such APIs offer the potential to simplify the devel-
opment of distributed systems based upon re-usable overlay services. This is a
novel approach that has influenced the design of our overlay framework (see
section 3.3). However, we believe that this approach does not go far enough; it
concentrates on DHT-based technologies and does not generalise to the many
types of overlays that are available (as discussed above). Also, it assumes static
layering of overlay types in contrast to our dynamic approach. Hence, we pro-
pose a more general approach whereby overlay networks can arbitrarily (albeit
sensibly) depend upon one another. For example, a publish-subscribe overlay
can be layered atop a DHT in one configuration, or a flooding-based overlay in
another (e.g. in a small scale ad hoc or wireless sensor network).

Parvalantzas et al. [24] has previously investigated middleware with extensi-
ble PIPs (then referred to as binding types), and this work has been an influence.
However, the present research fundamentally extends this earlier work. In partic-
ular, it builds on the availability of the overlay framework to considerably extend
the richness and scope of the PIPs that can be provided (e.g. into areas of re-
source discovery, peer-to-peer file sharing, efficient wide area publish-subscribe,
wide area multicast etc). Furthermore, we now accommodate alternative, per
infrastructure, PIP implementations, together with their runtime reconfigura-
tion, and also simultaneously support multiple PIPs. We also introduce new
mechanisms to support the developer in selecting, configuring and using PIPs.

Finally, there are now a number of established frameworks that support the
configuration and reconfiguration of pluggable network protocols. As we have
discussed previously, the design of the Gridkit framework is built upon this ear-
lier work; message dissemination through the framework is similar to the Cactus
approach [16] i.e. a message is forwarded to interested components only; and the
top-level configurator is derived from the Ensemble approach [29]. Hence, with
Gridkit we do not present a new approach for the development of such frame-
works, rather we apply the concept of pluggable frameworks: across a diverse
set of middleware services, in heterogeneous devices and environments. Hierar-
chical frameworks such as Ensemble [29], Horus [30], and x-kernel [18] provide
pluggable stack structures into which micro-protocols implementing smaller pro-
tocol functionality are plugged. These systems generally support a single inter-
action type (normally group communication), and the fine-grained nature of the
micro-protocol functionality makes meaningful configuration and reconfigura-
tion of protocols a complex task. Gridkit supports both coarse and fine-grained

352 P. Grace et al.

reconfigurability, and offers declarative methods to define configurations and re-
configurations. Cactus [16] is the closest framework to Gridkit in terms of its
structure and dissemination of messages through the framework; however, it
does not consider the potential benefits of dynamically reconfigurable interac-
tion types nor does it examine the benefits of supporting middleware services
with overlay networks. Finally, two alternative systems in this area are Appia
and SAMOA. Appia [22] supports the co-ordination of multiple channels (re-
lated to a common task) operating within the protocol stack; and SAMOA[32]
examines support for the concurrent execution of events across micro-protocols
in the framework. Neither of these features are addressed in our current Gridkit
implementation, and offer potential areas of future research.

6 Conclusions and Future Work

In this paper we have discussed two complementary component frameworks that
respectively support an extensible set of interaction paradigms and an extensible
set of overlay networks. The combination of the two frameworks enables a wide
range of pluggable interaction paradigms to be instantiated in a wide range of
network environments and to be reconfigured at runtime. The combination thus
addresses both of the major requirements of the “divergent Grid” as discussed
in the introduction.

To date we have implemented the two frameworks and populated them with
a substantial set of plug-ins. In the interaction framework, we have implemented
the publish-subscribe and group PIPs that are discussed in this paper in C++
and Java respectively. This multi-language integration is a property of the Open-
COM v2 component model [8] which we use to structure all our software. We have
also implemented IIOP and SOAP-based RPC PIPs (in C++) and a stream-
ing PIP (in Java). In terms of overlay plug-ins, Chord, Scribe and Application
Level Multicast (i.e. TBCP [21]) have been implemented in Java, and Gossip and
ProbMcast have been implemented in C++. The two frameworks themselves,
plus the context engine, are implemented in Java. Mostly, we have used the multi-
language integration feature for practical reasons to more easily accommodate
already-written software into the frameworks.

Although we have made considerable progress, a lot remains to be done. We
have addressed dynamic deployment of both overlays and PIPs according to the
approach discussed in section 3.2, and we have experimented with reconfigura-
tion. But there is a lot more territory to explore in the area of distributed recon-
figuration as discussed in section 4.2. Also, there are a lot of interesting issues in
cross-layer distributed reconfiguration that involves intelligent cross-coordinated
reconfiguration of both frameworks. For example, a publish-subscribe PIP might
be adequately underpinned by a TBCP overlay while most or all of its users are
situated in the fixed network; but if the situation evolves so that at some point
a significant number of users are situated in ad-hoc network environments, then
the optimal underpinning of the PIP needs to be reconsidered and should ideally
be supported by a coordinated federation of horizontally-composed overlays.

Deep Middleware for the Divergent Grid 353

Additional areas of challenge that we are addressing in a follow-on project are
the use of Model Driven Architecture to configure our frameworks and also to
provide constraint on their reconfiguration; and the use of autonomic techniques
so that the frameworks can not only adapt themselves to changing environmental
conditions but can also learn from prior adaptations and make better decisions
on that basis.

Acknowledgements

This work is funded by the EPSRC under the Open Overlays project (grant
reference GR/S68521/01). The authors would also like to acknowledge our col-
leagues on the project: Chris Cooper, David Duce, Musbah Sager, Wei Li, Lau-
rent Mathy, Wei Cai and Wai-Kit Yeung.

References

1. A. Andersen, G. Blair, V. Goebel, R. Karlsen, T. Stabell-Kul, and W. Yu. Arc-
tic Beans: Configurable and Reconfigurable Enterprise Component Architectures.
IEEE Distributed Systems Online, 2(7), November 2001.

2. D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. The Case for Resilient
Overlay Networks. In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems, pages 152–157, Elmau, Germany, May 2001.

3. G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-Limon,
T. Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski. The
design and implementation of Open ORB 2. IEEE Distributed Systems Online,
2(6), September 2001.

4. G. Blair, G. Coulson, and P. Grace. Research Directions in Reflective Middleware:
the Lancaster Experience. In Proceedings of the 3rd Workshop on Reflective and
Adaptive Middleware (RM2004), pages 262–267, Toronto, Canada, October 2004.

5. L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective
mIddleware System for Mobile Applications. IEEE Transactions on Software En-
gineering, 29(10):929–945, October 2003.

6. M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in communications (JSAC), 20(8):1489– 1499, October 2002.

7. J. Chin and P.V. Coveney. Towards Tractable Toolkits for the Grid: a Plea for
Lightweight, Usable Middleware. RealityGrid NeSC Tech Report UKeS-2004-01,
February 2004.

8. G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama. A Component
Model for Building Systems Software. In Proceedings of the IASTED Confer-
ence on Software Engineering and Applications (SEA’04), Cambridge, MA, USA,
November 2004.

9. G. Coulson, G. Blair, D. Hutchison, A. Joolia, K. Lee, J. Ueyama, A.T. Gomes, and
Y. Ye. NETKIT: A Software Component-Based Approach to Programmable Net-
working. ACM SIGCOMM Computer Communications Review (CCR), 33(5):55–
66, October 2003.

354 P. Grace et al.

10. F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a Com-
mon API for Structured P2P Overlays. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS), pages 33–44, Berkeley, CA, USA,
February 2003.

11. N. Davies, A. Friday, and O. Storz. Exploring the Grid’s Potential for Ubiquitous
Computing. IEEE Pervasive Computing, 3(2):74–75, April-June 2004. see also:
http://ubigrid.lancs.ac.uk.

12. D. Doval and D. OMahony. Overlay Networks: A Scalable Alternative for P2P.
IEEE Internet Computing, 7(4):79–82, July-August 2003.

13. N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington.
ICENI: Optimisation of Component Applications within a Grid Environment. Par-
allel Computing, 28(12):1753–1772, December 2002.

14. Gnutella Protocol Specification v0.6. http://rfc-gnutella.sourceforge.net.
15. P. Grace, G. Coulson, G. Blair, L. Mathy, W.K. Yeung, W. Cai, D. Duce, and

C. Cooper. GRIDKIT: Pluggable Overlay Networks for Grid Computing. In Pro-
ceedings of the International Symposium on Distributed Objects and Applications
(DOA04), pages 1463–1481, Cyprus, October 2004.

16. M. Hiltunen and R. Schlichting. A Configurable Membership Service. IEEE Trans-
actions on Computers, 47(5):573–586, 1998.

17. D. Hughes, I. Warren, and G. Coulson. AGnuS: The Altruistic Gnutella Server.
In Proceedings of the 3rd International Conference on Peer-to-Peer Computing
(P2P2003), pages 202–203, Linkoping, Sweden, September 2003.

18. N. Hutchinson and L. Peterson. The x-kernel: An Architecture for Implement-
ing Network Protocols. IEEE Transactions on Software Engineering, 17(1):64–76,
January 1991.

19. F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and R. Campbell.
Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB. In Proceedings of the 2nd ACM/IFIP International Conference on Middle-
ware, pages 121–143, New York, NY, USA, April 2000.

20. B. Li, J. Guo, and M. Wang. iOverlays: A Lightweight Middleware Infras-
tructure for Overlay Application Implementations. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, pages 135–154,
Toronto, Canada, November 2004.

21. L. Mathy, R. Canonico, and D. Hutchinson. An Overlay Tree Building Control Pro-
tocol. In Proceedings of the 3rd International COST264 Workshop on Networked
Group Communication, pages 76–87, London, UK, November 2001.

22. H. Miranda and L. Rodrigues. Communication Support for Multiple QoS Re-
quirements. In Proceedings of the 3rd European Research Seminar on Advances in
Distributed Systems (ERSADS99), Madeira Island, Portugal, April 1999.

23. ISO Reference Model for Open Distributed Processing. http://www.dstc.edu.au/
Research/Projects/ODP/standards.html.

24. N. Parlavantzas, G. Coulson, and G. Blair. An Extensible Binding Framework
for Component-Based Middleware. In Proceedings of the 7th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2003), pages 252–
263, Brisbane, Australia, September 2003.

25. M. Roman and N. Islam. Dynamically Programmable and Reconfigurable Mid-
dleware Services. In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, pages 372–396, Toronto, Canada, November 2004.

26. M. Roman, F. Kon, and R. Campbell. Reflective Middleware: From Your Desk to
Your Hand. IEEE Distributed Systems Online, 2(5), August 2001.

Deep Middleware for the Divergent Grid 355

27. S. Sadjadi, P. McKinley, and E. Kasten. Architecture and Operation of an Adapt-
able Communication Substrate. In Proceedings of the 9th IEEE International
Workshop on Future Trends of Distributed Computing Systems (FTDCS’03), pages
46–55, San Juan, Puerto Rico, May 2003.

28. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings
of the ACM SIGCOMM 2001 Conference, pages 149–160, San Diego, CA, USA,
August 2001.

29. R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Adaptive
Systems Using Ensemble. Software Practice and Experience, 28(9):963–979, August
1998.

30. R. van Renesse, K. Birman, and S. Maffeis. Horus, a Flexible Group Communica-
tion System. Communications of the ACM, 39(4):76–83, April 1996.

31. R. van Renesse, Y. Minsky, and M. Hayden. A Gossip-Based Failure Detection
Service. In Proceedings of the 1st IFIP International Conference on Middleware,
pages 55–70, Lake District, UK, September 1998.

32. P. Wojciechowski, O. Rutti, and A. Schiper. SAMOA: A Framework for a
Synchronisation-Augmented Microprotocol Approach. In Proceedings of the 18th
IEEE Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, April
2004.

	Introduction
	The Interaction Framework
	Motivation
	Overview of the Interaction Framework
	Interaction Framework APIs

	The Overlay Framework
	Background on Overlays
	Overview of the Overlay Framework
	Overlay Framework APIs

	Case Studies of Configuration and Reconfiguration
	Configuration
	Reconfiguration

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

